
General Information
News

2023/08/20 - All data and files associated with the last 3 NSD core scan sessions have 

now been publicly released.

2021/12/16 - The NSD data paper is now published in Nature Neuroscience.

2021/09/03 - The NSD dataset is now released, and version 1.1 of the NSD Data Manual 

is now complete. A video walkthrough of NSD data files is also now available (details 

below).

2021/02/15 - Version 1.0 of the NSD Data Manual is now complete.

Basic information
Welcome to the Natural Scenes Dataset (NSD) Data Manual. This web site provides a 

detailed, technical description of all NSD data files that are available. It will be updated as 

questions and issues arise. The information on this site is also available as a single 

downloadable PDF (last snapshot 2023/08/20 - version 1.3) (this may be convenient for 

performing "Find" queries).

If you want to browse or download the data, please see How to get the data⁠ .

The official paper that formally describes the NSD dataset is available as:

Allen, St-Yves, Wu, Breedlove, Prince, Dowdle, Nau, Caron, Pestilli, Charest, 

Hutchinson, Naselaris*, & Kay*. A massive 7T fMRI dataset to bridge cognitive 

neuroscience and artificial intelligence. Nature Neuroscience (2022).﻿

We refer to this as the "NSD data paper". The data paper has some associated online 

resources at the NSD OSF site. The contents of this data manual assume familiarity with the 

data paper.

We have created a video walkthrough that gives an overview of the data files present in 

the NSD dataset.

Announcements and updates to the NSD dataset will be documented and logged on this page, 

so check back regularly.

If you have questions about the NSD dataset, please either (1) post your question to the nsd-

users mailing list, (2) open an issue or discussion on the relevant github repository (e.g. 

https://cvnlab.slite.com/api/s/channel/CPyFRAyDYpxdkPK6YbB5R1/NSD%20Data%20Manual
http://naturalscenesdataset.org/NSD_Data_Manual_v1.3
https://slite.com/api/public/notes/dC~rBTjqjb/redirect
https://doi.org/10.1038/s41593-021-00962-x
https://osf.io/zyb3t/
https://youtu.be/LfHowycsXLI
https://groups.google.com/forum/#!forum/nsd-users


http://github.com/cvnlab/nsdcode/ or http://github.com/cvnlab/nsddatapaper/), (3) send 

queries directly to kay@umn.edu, or (4) submit anonymous feedback/suggestions via this 

Google form. Please let us know if there is missing documentation or if something is not clear.

Change history
Substantive changes to NSD data files are documented and logged here:

2023/08/20 - The files related to the last 3 NSD core scan sessions from each subject are 

now publicly released.

2023/05/27 - The files related to the final memory test (nsdmemory) are now publicly 

released. See  and .⁠⁠Experiments⁠ ⁠⁠Behavioral data⁠

2022/08/15 - In nsddata/inspections/rois/prf-visualandecc/, a few visualizations were 

incorrect. Specifically, the files "subj02_prf-eccrois_on_eccentricity.png" and "subj02_prf-

visualrois_on_angle.png" have now been corrected.

2022/01/26 - For user convenience, we now provide some additional versions of the 

nsddata/stimuli/prf stimulus files (description has been updated in ).⁠⁠Untitled⁠

2021/10/20 - Diffusion derivatives are now available (nsddata_diffusion/) and documented 

in the data manual (see ). Summary b=0 diffusion files (called 

nsddata/ppdata/subj*/anat/DWI_*.nii.gz) and associated 

nsddata/inspections/coregistration/*DWI* files have been created to help visualize the 

quality of the pre-processed diffusion data and their registration to the T1+T2 anatomy. In 

addition, the "knowndataproblems.txt" file has been slightly updated/modified. 

⁠⁠Untitled⁠

2021/09/03 - Initial public release of the NSD dataset.

2021/09/02 - actually add split-half ncsnr (noise ceiling) files (this was for some reason not 

completed on the previous iteration on 2021/08/07)

2021/08/07 - add additional files pertaining to BOLDscreen calibration; add information on 

race to nsddemographics.xlsx; include Phase component of the SWI scans to the raw 

BIDS data; add split-half ncsnr (noise ceiling) files; add pre-processed eyetracking data 

and inspection figures

2021/07/23 - design .tsv files for the nsdsynthetic experiment were incorrect; these have 

been fixed.

2021/05/16 - Added probmap .mgz files (see ROIs⁠ ) and associated .png 

surfacevisualizations (see Data inspections⁠ )

2020/12/20 - Official version 1.0 release of nsd_mapdata (in the nsdcode repository).

Community-driven content
If you have NSD-related information, tools, resources, tutorials, or links that you would like to 

share with the community, please contact kay@umn.edu and the information can be listed 

http://github.com/cvnlab/nsdcode/
http://github.com/cvnlab/nsddatapaper/
mailto:kay@umn.edu
https://forms.gle/abDxu6nS17WVVUt89
https://slite.com/api/public/notes/NKalgWd__F/redirect
https://slite.com/api/public/notes/fRv4lz5V2F/redirect
https://slite.com/api/public/notes/NKalgWd__F/redirect
https://slite.com/api/public/notes/73DIWB4EsZ/redirect
https://slite.com/api/public/notes/X_7BBMgghj/redirect
https://slite.com/api/public/notes/h4BL3w9~C~/redirect
http://github.com/kendrickkay/nsdcode/
mailto:kay@umn.edu


here.

nsdexamples (http://github.com/kendrickkay/nsdexamples). These example scripts, 

written by Kendrick Kay, were created to demonstrate some basic loading, analysis, and 

visualization of the NSD dataset.

nsd_access (https://github.com/tknapen/nsd_access). This toolbox, written by Tomas 

Knapen, provides a convenient Python-based interface to the NSD dataset. There are also 

some examples of how to load data and perform basic visualization. The toolbox also 

enables easy access to COCO image annotation information, including category labels 

and bounding boxes. ﻿

Papers and pre-prints
Here are links to papers and pre-prints that use NSD data. 

Fractional Ridge Regression: a Fast, Interpretable Reparameterization of Ridge 

Regression.

Rokem, A. & Kay, K.  

GigaScience (2020).﻿

Extensive sampling for complete models of individual brains.

Naselaris, T., Allen, E., & Kay, K. 

Current Opinion in Behavioral Sciences (2021).﻿

A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial 

intelligence.

Allen, St-Yves, Wu, Breedlove, Prince, Dowdle, Nau, Caron, Pestilli, Charest, 

Hutchinson, Naselaris*, & Kay*.

Nature Neuroscience (2022).﻿

NeuroGen: activation optimized image synthesis for discovery neuroscience.

Gu, Z., Jamison, K.W., Khosla, M., Allen, E.J., Wu, Y., Naselaris, T., Kay, K., Sabuncu, 

M.R., Kuceyeski, A.

NeuroImage (2022).﻿

Non-Neural Factors Influencing BOLD Response Magnitudes within Individual 

Subjects.

Kurzawski, J.W., Gulban, O.F., Jamison, K., Winawer, J.*, Kay, K.* 

Journal of Neuroscience (2022).﻿

What can 5.17 billion regression fits tell us about artificial models of the human 

visual system?

Colin Conwell, Jacob S. Prince, George A. Alvarez, Talia Konkle

NeurIPS SVRHM workshop (2021).﻿

Improving the accuracy of single-trial fMRI response estimates using GLMsingle.

Prince, J.S., Charest, I., Kurzawski, J.W., Pyles, J.A., Tarr, M.J., Kay, K.N. 

http://github.com/kendrickkay/nsdexamples
https://github.com/tknapen/nsd_access
https://github.com/tknapen/nsd_access
https://doi.org/10.1093/gigascience/giaa133
https://doi.org/10.1093/gigascience/giaa133
https://doi.org/10.1016/j.cobeha.2020.12.008
https://doi.org/10.1016/j.cobeha.2020.12.008
https://doi.org/10.1038/s41593-021-00962-x
https://doi.org/10.1038/s41593-021-00962-x
https://doi.org/10.1016/j.neuroimage.2021.118812
https://doi.org/10.1016/j.neuroimage.2021.118812
https://doi.org/10.1523/JNEUROSCI.2532-21.2022
https://openreview.net/forum?id=i_xiyGq6FNT
https://doi.org/10.7554/eLife.77599


eLife (2022).﻿

Personalized visual encoding model construction with small data.

Zijin Gu, Keith Jamison, Mert Sabuncu, and Amy Kuceyeski

Communications Biology (2022).﻿

Large-Scale Benchmarking of Diverse Artificial Vision Models in Prediction of 7T 

Human Neuroimaging Data.

Colin Conwell, Jacob S. Prince, George A. Alvarez, Talia Konkle

bioRxiv (2022).﻿

Selectivity for food in human ventral visual cortex.

Nidhi Jain, Aria Wang, Margaret M. Henderson, Ruogu Lin, Jacob S. Prince, Michael 

J. Tarr, and Leila Wehbe

Communications Biology (2023).﻿

High-level visual areas act like domain-general filters with strong selectivity and 

functional specialization.

Meenakshi Khosla, Leila Wehbe

bioRxiv (2022).﻿

Short-term plasticity in the human visual thalamus.

Jan W Kurzawski, Claudia Lunghi, Laura Biagi, Michela Tosetti, Maria Concetta 

Morrone, Paola Binda

eLife (2022).﻿

Color-biased regions in the ventral visual pathway are food selective.

Pennock, I.M.L., Racey, C., Allen, E.J., Wu, Y., Naselaris, T., Kay, K.N., Franklin, A., 

Bosten, J.M.

Current Biology (2022).﻿

Multiple Traces and Altered Signal-to-Noise in Systems Consolidation: 

Complementary Evidence from the 7T fMRI Natural Scenes Dataset.

Vanasse, T.J., Boly, M., Allen, E.J., Wu, Y., Naselaris, T., Kay, K., Cirelli, C., Tononi, G.

PNAS (2022).﻿

The risk of bias in data denoising methods: examples from neuroimaging.

Kay, K.

PLoS One (2022).﻿

A Highly Selective Response to Food in Human Visual Cortex Revealed by 

Hypothesis-Free Voxel Decomposition.

Meenakshi Khosla, N. Apurva Ratan Murty, Nancy G Kanwisher

Current Biology (2022).﻿

See commentary:

Visual cortex: Big data analysis uncovers food specificity.

Michael M. Bannert and Andreas Bartels

Current Biology (2022).﻿

https://doi.org/10.7554/eLife.77599
https://doi.org/10.1038/s42003-022-04347-z
https://www.biorxiv.org/content/10.1101/2022.03.28.485868v1.full
https://doi.org/10.1038/s42003-023-04546-2
https://www.biorxiv.org/content/10.1101/2022.03.16.484578v1
https://elifesciences.org/articles/74565
https://doi.org/10.1016/j.cub.2022.11.063
https://doi.org/10.1073/pnas.2123426119
https://doi.org/10.1371/journal.pone.0270895
https://doi.org/10.1016/j.cub.2022.08.009
https://doi.org/10.1016/j.cub.2022.08.068


Low-level tuning biases in higher visual cortex reflect the semantic 

informativeness of visual features.

Margaret Henderson, Michael J. Tarr, Leila Wehbe

Journal of Vision (2023).﻿

Re-expression of CA1 and entorhinal activity patterns preserves temporal context 

memory at long timescales.

Futing Zou, Wanjia Guo, Emily J. Allen, Yihan Wu, Ian Charest, Thomas Naselaris, 

Kendrick Kay, Brice A. Kuhl, J. Benjamin Hutchinson, Sarah DuBrow

bioRxiv (2022).﻿

A texture statistics encoding model reveals hierarchical feature selectivity across 

human visual cortex.

Margaret M. Henderson, Michael J. Tarr, Leila Wehbe

Journal of Neuroscience (2023).﻿

Semantic scene descriptions as an objective of human vision

Doerig, A., Kietzmann, T.C., Allen, E., Wu, Y., Naselaris, T., Kay, K., Charest, I.

arXiv (2022).﻿

Incorporating natural language into vision models improves prediction and 

understanding of higher visual cortex.

Wang, A.Y., Kay, K., Naselaris, T., Tarr, M.J., Wehbe, L.

bioRxiv (2022).﻿

Mind Reader: Reconstructing complex images from brain activities.

Sikun Lin, Thomas Sprague, Ambuj K Singh.

arXiv (2022).﻿

Natural scene sampling reveals reliable coarse-scale orientation tuning in human 

V1.

Roth, Z.N., Kay, K.*, Merriam, E.P.*

Nature Communications (2022).﻿

Representations in human primary visual cortex drift over time.

Roth, Z.N., Merriam, E.P.

bioRxiv (2022).﻿

High-resolution image reconstruction with latent diffusion models from human 

brain activity.

Takagi, Y., Nishimoto, S.

bioRxiv (2022).﻿

Decoding natural image stimuli from fMRI data with a surface-based convolutional 

network.

Zijin Gu, Keith Jamison, Amy Kuceyeski, Mert Sabuncu

arXiv (2022).﻿

The Algonauts Project 2023 Challenge: How the Human Brain Makes Sense of 

Natural Scenes.

https://doi.org/10.1167/jov.23.4.8
https://www.biorxiv.org/content/10.1101/2022.08.31.506090v1
https://doi.org/10.1523/JNEUROSCI.1822-22.2023
https://arxiv.org/abs/2209.11737
https://doi.org/10.1101/2022.09.27.508760
https://arxiv.org/abs/2210.01769
https://doi.org/10.1038/s41467-022-34134-7
https://www.biorxiv.org/content/10.1101/2022.10.13.512078v1
https://www.biorxiv.org/content/10.1101/2022.11.18.517004v1.full
https://arxiv.org/abs/2212.02409
https://arxiv.org/abs/2301.03198


A.T. Gifford, B. Lahner, S. Saba-Sadiya, M.G. Vilas, A. Lascelles, A. Oliva, K. Kay, G. 

Roig, R.M. Cichy.

arXiv (2023).﻿

Brain-Diffuser: Natural scene reconstruction from fMRI signals using generative 

latent diffusion.

Furkan Ozcelik and Rufin VanRullen.

arXiv (2023).

Neural Selectivity for Real-World Object Size In Natural Images

Andrew F. Luo, Leila Wehbe, Michael J. Tarr, Margaret M. Henderson

bioRxiv (2023)﻿

MindDiffuser: Controlled Image Reconstruction from Human Brain Activity with 

Semantic and Structural Diffusion

Yizhuo Lu, Changde Du, Dianpeng Wang, Huiguang He

arXiv (2023).﻿

The transition from vision to language: distinct patterns of functional connectivity 

for sub-regions of the visual word form area

Maya Yablonski, Iliana I Karipidis, Emily Kubota, Jason D Yeatman

bioRxiv (2023).﻿

Modulating human brain responses via optimal natural image selection and 

synthetic image generation

Zijin Gu, Keith Jamison, Mert R. Sabuncu, and Amy Kuceyeski

bioRxiv (2023).﻿

Reconstructing seen images from human brain activity via guided stochastic 

search

Reese Kneeland, Jordyn Ojeda, Ghislain St-Yves, Thomas Naselaris

arXiv (2023).﻿

Sample Reweighting for Label Denoising of Neural Activity Data

Dongfang Xu, Rong Chen

IEEE/EMBS Conference on Neural Engineering (2023)﻿

BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP for 

Generic Natural Visual Stimulus Decoding

Yulong Liu, Yongqiang Ma, Wei Zhou, Guibo Zhu, Nanning Zheng

arXiv (2023).﻿

Brain Captioning: Decoding human brain activity into images and text

Matteo Ferrante, Furkan Ozcelik, Tommaso Boccato, Rufin VanRullen, Nicola Toschi

arXiv (2023).﻿

A Unifying Principle for the Functional Organization of Visual Cortex

Eshed Margalit, Hyodong Lee, Dawn Finzi, James J. DiCarlo, Kalanit Grill-Spector, 

Daniel L. K. Yamins

arXiv (2023).﻿

https://arxiv.org/abs/2301.03198
https://arxiv.org/abs/2303.05334v1
https://www.biorxiv.org/content/10.1101/2023.03.17.533179v1.full
https://arxiv.org/pdf/2303.14139.pdf
https://www.biorxiv.org/content/10.1101/2023.04.18.537397v1
https://arxiv.org/pdf/2304.09225.pdf
https://arxiv.org/pdf/2305.00556.pdf
https://doi.org/10.1109/NER52421.2023.10123809
https://arxiv.org/pdf/2302.12971.pdf
https://arxiv.org/pdf/2305.11560.pdf
https://www.biorxiv.org/content/10.1101/2023.05.18.541361v1.full


Reconstructing the Mind’s Eye: fMRI-to-Image with Contrastive Learning and 

Diffusion Priors

Paul S. Scotti*, Atmadeep Banerjee*, Jimmie Goode, Stepan Shabalin, Alex Nguyen, 

Ethan Cohen, Aidan J. Dempster, Nathalie Verlinde, Elad Yundler, David Weisberg, 

Kenneth A. Norman*, and Tanishq Mathew Abraham*

arXiv (2023).﻿

Brain Dissection: fMRI-trained Networks Reveal Spatial Selectivity in the 

Processing of Natural Images

Gabriel H. Sarch, Michael J. Tarr, Katerina Fragkiadaki, Leila Wehbe

arXiv (2023).﻿

Second Sight: Using brain-optimized encoding models to align image distributions 

with human brain activity

Reese Kneeland, Jordyn Ojeda, Ghislain St-Yves, Thomas Naselaris

arXiv (2023).﻿

Brain-optimized deep neural networks of human visual areas learn non-hierarchical 

representations.

St-Yves, G., Allen, E.J., Wu, Y., Kay, K.*, Naselaris, T.* 

Nature Communications (2023).﻿

Brain Diffusion for Visual Exploration: Cortical Discovery using Large Scale 

Generative Models.

Andrew F. Luo, Margaret M. Henderson, Leila Wehbe, Michael J. Tarr

arXiv (2023).﻿

Improving visual image reconstruction from human brain activity using latent 

diffusion models via multiple decoded inputs.

Yu Takagi, Shinji Nishimoto

arXiv (2023). ﻿

DreamCatcher: Revealing the Language of the Brain with fMRI using GPT 

Embedding

Subhrasankar Chatterjee, Debasis Samanta

arXiv (2023).﻿

What can 1.8 billion regressions tell us about the pressures shaping high-level 

visual representation in brains and machines?

Colin Conwell, Jacob S. Prince, Kendrick N. Kay, George A. Alvarez, Talia Konkle

bioRxiv (2023)﻿

THE ALGONAUTS PROJECT 2023 CHALLENGE: UARK-UALBANY TEAM 

SOLUTION

Xuan Bac Nguyen, Xudong Liu, Xin Li, Khoa Luu

arXiv (2023)﻿

Memory Encoding Model

Huzheng Yang, James Gee, Jianbo Shi

https://arxiv.org/pdf/2305.18274.pdf
https://doi.org/10.1101/2023.05.29.542635
https://arxiv.org/abs/2306.00927
https://doi.org/10.1038/s
https://arxiv.org/abs/2306.03089
https://arxiv.org/pdf/2306.11536.pdf
https://arxiv.org/pdf/2306.10082.pdf
https://doi.org/10.1101/2022.03.28.485868
https://arxiv.org/pdf/2308.00262.pdf
https://arxiv.org/pdf/2308.01175.pdf


arXiv (2023)﻿

Applicability of scaling laws to vision encoding models

Takuya Matsuyama, Kota S Sasaki, Shinji Nishimoto

arXiv (2023).﻿

A contrastive coding account of category selectivity in the ventral visual stream

Jacob S. Prince, George A. Alvarez, Talia Konkle

bioRxiv (2023).﻿

Predicting brain activity using Transformers

Hossein Adeli, Sun Minni, Nikolaus Kriegeskorte

bioRxiv (2023).﻿

A Parameter-efficient Multi-subject Model for Predicting fMRI Activity

Connor Lane, Gregory Kiar

arXiv (2023). ﻿

Expansion of a frontostriatal salience network in individuals with depression

Charles J. Lynch, I. Elbau, Tommy Ng, Aliza Ayaz, Shasha Zhu, Nicola Manfredi, 

Megan A. Johnson, Daniel L Wolk, Jonathan D. Power, E. Gordon, Kendrick Norris 

Kay, A. Aloysi, Stefano Moia, C. Caballero-Gaudes, L. Victoria, N. Solomonov, E. 

Goldwaser, Benjamin Zebley, L. Grosenick, J. Downar, F. Vila-Rodriguez, Z. 

Daskalakis, D. Blumberger, N. Williams, F. Gunning, C. Liston

bioRxiv (2023).﻿

UniBrain: Unify Image Reconstruction and Captioning All in One Diffusion Model 

from Human Brain Activity

Weijian Mai, Zhijun Zhang

arRxiv (2023).﻿

https://arxiv.org/pdf/2308.01175.pdf
https://arxiv.org/pdf/2308.00678.pdf
https://www.biorxiv.org/content/10.1101/2023.08.04.551888v1
https://www.biorxiv.org/content/biorxiv/early/2023/08/05/2023.08.02.551743.full.pdf
https://arxiv.org/pdf/2308.02351.pdf
https://www.biorxiv.org/content/10.1101/2023.08.09.551651v1
https://arxiv.org/pdf/2308.07428.pdf


Terms and Conditions
Before you download the NSD data, please read the data sharing and usage agreement below. 

You must agree to all terms and conditions before accessing the data.

Data Sharing and Usage Agreement
Before I download or process the NSD dataset, I agree to the following terms and conditions:

The Center for Magnetic Resonance Research (CMRR) grants me non-exclusive, royalty-

free access to download and process this dataset.

1.

I will utilize this dataset only for research and educational purposes.2.

I will not distribute this dataset or its components to any other individual or entity.3.

I will require anyone on my team who utilizes these data to comply with this data use 

agreement.

4.

I will neither sell this dataset or its components nor monetize it.5.

I will comply with any rules and regulations imposed by my institution and its institutional 

review board in requesting these data.

6.

The NSD dataset is collected from human subjects and has been de-identified. I will not 

retrieve or try to retrieve protected health information (PHI) of the human subjects in this 

dataset. If I incidentally discover PHI information, I will immediately inform the principal 

investigator.

7.

I agree that all presentations and publications resulting from any use of this dataset must 

cite the relevant work using the suggested citation format listed below.

8.

CMRR specifically disclaims any warranties including, but not limited to, the implied 

warranties of merchantability and fitness for a particular purpose. The dataset and the 

encompassing software provided hereunder is on an “as is” basis, and CMRR has no 

obligation to provide maintenance, support, updates, enhancements, or modifications.

9.

In no event shall CMRR be liable to any party for direct, indirect, special, incidental, or 

consequential damages arising out of the use of this dataset and the accompanying 

software, even if CMRR has been advised of the possibility of such damage.

10.

In addition to the above-listed terms and conditions, I will also comply with federal, state, 

local, and institutional policies and regulations.

11.

Citation Format
If you make use of the NSD dataset, please cite the NSD data paper:

Allen, St-Yves, Wu, Breedlove, Prince, Dowdle, Nau, Caron, Pestilli, Charest, 

Hutchinson, Naselaris*, & Kay*. A massive 7T fMRI dataset to bridge cognitive 

https://doi.org/10.1038/s41593-021-00962-x


neuroscience and artificial intelligence. Nature Neuroscience (2021).﻿

In addition, please acknowledge the NSD funding sources using wording similar to:

"Collection of the NSD dataset was supported by NSF IIS-1822683 and NSF IIS-

1822929."

https://doi.org/10.1038/s41593-021-00962-x


How to get the data
Before accessing the data, you must agree to the Terms and Conditions⁠  and fill out the 

NSD Data Access form. After doing so, you are granted full access to the NSD dataset.

AWS
The NSD data are available for download via Amazon Web Services (AWS)'s Simple Storage 

Service (S3). Thanks to the Public Dataset Program, access to files (request, egress, and 

transfer costs) is free of charge.

There are several ways to access the data:

For a light-weight experience (no AWS account necessary), you can directly browse the 

NSD data files via a simple web interface at https://natural-scenes-

dataset.s3.amazonaws.com/index.html

Alternatively, you can use AWS and browse the NSD data files at 

https://s3.console.aws.amazon.com/s3/buckets/natural-scenes-dataset

Note that you can directly download individual files from AWS via a URL, like: 

https://natural-scenes-dataset.s3-us-east-

2.amazonaws.com/nsddata/experiments/nsd/nsd_screencapture.mp4

You can use a graphical S3 client (e.g. Cyberduck) to browse and download the data. If 

using a client, connect to natural-scenes-dataset.s3-us-east-2.amazonaws.com. (Note 

that in order to connect, you have to supply an access key ID and secret that is associated 

with your own personal AWS account.) 

For large-scale data downloading, the best bet is probably to use the AWS CLI (command-

line interface) which is "rsync"-like.

Note that as an alternative to downloading the data and analyzing on local machines, AWS also 

provides access to cloud computing resources in the form of EC2 instances.

For your convenience, here is a text listing of all files in the AWS bucket (natural-scenes-

dataset).

AWS CLI
The AWS CLI provides convenient programmatic access to the data.

https://slite.com/api/public/notes/IB6BSeW_7o/redirect
https://forms.gle/xue2bCdM9LaFNMeb7
https://aws.amazon.com/opendata/public-datasets/
https://natural-scenes-dataset.s3.amazonaws.com/index.html
https://s3.console.aws.amazon.com/s3/buckets/natural-scenes-dataset
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/nsd/nsd_screencapture.mp4
http://natural-scenes-dataset.s3-us-east-2.amazonaws.com/
http://naturalscenesdataset.org/fulllisting202109021229.txt
https://aws.amazon.com/cli/


Consider the following example:

aws s3 ls s3://natural-scenes-dataset  

This command simply lists the buckets (folders) available.

As another example:

aws s3 cp s3://natural-scenes-

dataset/nsddata/experiments/nsd/nsd_screencapture.mp4 

/path/to/local/dir/

This command downloads the .mp4 file and places it inside the local directory "dir".

As another example:

aws s3 sync --dryrun s3://natural-scenes-dataset/nsddata_betas 

/path/to/local/nsddata_betas --exclude "*func1mm*" --exclude "*MNI*" --

exclude "*betas_assumehrf*" --exclude "*betas_fithrf_GLMdenoise_RR*" --

exclude "*betas*session*nii.gz"  

This command synchronizes the "nsddata_betas" directory from the server to the local 

"nsddata_betas" directory (located under /path/to/local/). Note that we include the --dryrun flag 

for cautionary purposes; you should remove the --dryrun flag once you are ready to actually 

perform the download. Also, note that the command includes several --exclude flags in order to 

reduce the amount of data downloaded. Specifically, the command excludes the 1-mm 

preparation of the functional data, the MNI version of the data, beta version 1 

("betas_assumehrf") and beta version 3 ("betas_fithrf_GLMdenoise_RR"), and the NIFTI 

version of the very large beta files.

As another example:

aws s3 sync --dryrun --exclude "*" --include "*eyedata*" s3://natural-

scenes-dataset/nsddata_timeseries /path/to/local/nsddata_timeseries

This command synchronizes the "nsddata_timeseries" directory, excluding ALL files except for 

the "eyedata" files (using a wildcard mechanism). Remove the --dryrun flag if all looks good.

The AWS CLI includes many customizable flags. Some flags that may be useful include --size-

only, --exact-timestamps, and --delete.



Overview of the data

Data listing from Amazon S3

Top-level directories
There are several top-level directories:

nsddata (~49 GB) - This is the main directory containing essential data files, including (but 

not limited to) anatomical data, results of the prf and floc experiments, behavioral data, 

FreeSurfer subject directories, and ROIs.

nsddata_betas (~8.3 TB) - This very large folder contains estimated fMRI single-trial 

responses ("betas") for the NSD experiment as well as associated results (e.g. noise 

ceiling estimates). There are multiple versions of the betas (e.g., betas_assumehrf (b1), 

betas_fithrf (b2), betas_fithrf_GLMdenoise_RR (b3)). Also, betas are prepared and 

available in different spaces (e.g., 1.8-mm volume (func1pt8mm), 1-mm volume 

(func1mm), subject-native surface (nativesurface), fsaverage, MNI).

nsddata_stimuli (~40 GB) - This contains the color natural scene images used in the 

NSD experiment.

nsddata_timeseries (~3.4 TB) - This very large folder contains the pre-processed fMRI 

time-series data from which the single-trial betas are estimated. Both 1.8-mm and 1-mm 

versions are available. In addition, this folder contains information associated with the 

time-series data, including physiological data (pulse and respiratory), experimental design 

information (i.e. which images were shown when), motion parameter estimates from the 

pre-processing of the fMRI data, and eyetracking data.

nsddata_other (~25 GB) - This contains miscellaneous items, including (but not limited 

to) materials used to run the experiments and original unedited FreeSurfer outputs.



nsddata_diffusion (~200 GB) - This contains derivatives from analyzing the diffusion 

data. NOTE: We are currently preparing the final versions of the diffusion derivative files, 

and they will be made available within a few weeks.

nsddata_rawdata (~946 GB) - This contains raw data in BIDS format.

The NSD dataset is very large in size. Depending on your needs, you may not need all of the 

files. For example, if you wish to work from the single-trial betas that we have provided, there is 

no need to download the raw data nor the pre-processed time-series data. As another example, 

if you want only the standard-resolution (1.8-mm) preparation of the data, you can exclude the 

high-resolution (1-mm) preparation, which will result in major space savings (requirement of ~6 

times less space). As a third example, if you want only beta version b3, there is no need to also 

download beta versions b1 and b2.

Held-out data
Some data collected as part of the NSD effort are not yet publicly available. These include the 

following:

nsdimagery (1 scan session) - Data related to the nsdimagery 7T fMRI experiment are 

not yet available. These data will be described and released as part of a separate paper 

effort.

nsdsynthetic (1 scan session) - Data related to the nsdsynthetic 7T fMRI experiment are 

not yet available. These data will be described and released as part of a separate paper 

effort.

Last 3 NSD core sessions - Due to the involvement of the NSD data in the Algonauts 

prediction challenge, the last 3 NSD core scan sessions from each of the 8 NSD subjects 

are being temporarily held out from public release. The held-out data will be released at a 

future date. The data are now released (Aug 20 2023).

nsdmemory (behavioral experiment) - Data from the final memory test conducted after 

completion of the NSD fMRI experiment are now available (released May 27 2023).

For the scan sessions mentioned above, the raw and pre-processed data are held out. 

However, the behavioral data and experimental design information (including the actual stimuli 

shown) for the held-out scan sessions are still available. Note that the held-out scan sessions 

may include instances of images whose responses are available in some other scan session 

either from that subject or from other subjects.

https://cvnlab.slite.com/app/channels/CT9Fwl4_hc/notes/algonauts.csail.mit.edu/


Experiments
This section covers the various experiments conducted for the NSD dataset. This includes 

details on stimuli and experimental design (e.g. the order in which stimuli were presented).

Acquisition-related information
 

nsddata/experiments/scanningprotocols/3TB_cvnlab_standardcoil_structural0pt8m

m.pdf﻿

 

This is a PDF report of the acquisition protocol for data collected at 3T. (Note: The 

diffusion scans are named dir98 and dir99, whereas the actually acquired data contain 99 

and 100 volumes, respectively. This is because there is an additional b=0 volume at the 

beginning. Also, note that the actual b-values recorded in the .bval files deviate slightly 

from the "dialed-in" values of 0, 1500, and 3000.)

 

nsddata/experiments/scanningprotocols/7TPS_cvnlab_nova1x32_bold1pt8mm.pdf﻿

 

This is a PDF report of the acquisition protocol for data collected at 7T.

nsddata/experiments/boldscreen/

This contains code, data, and figures illustrating the spectral power density measurement 

of the BOLDscreen 32 LCD monitor. 

boldscreen/boldscreen_spdmeasurement.p

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/scanningprotocols/3TB_cvnlab_standardcoil_structural0pt8mm.pdf
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/scanningprotocols/7TPS_cvnlab_nova1x32_bold1pt8mm.pdf


boldscreen/boldscreen_calibration.png 

Information regarding the prf experiment
 

nsddata/experiments/prf/prf_screencapture.mp4﻿

 

This movie is a screen capture of an example segment of the prf experiment.

screenshot from prf experiment

nsddata/stimuli/prf/RETBAR*

These are sequences of "aperture masks" that correspond to the multibar runs in the prf 

experiment. The files with "small" in the filename are resized versions of the masks. These 

resized versions have the aperture masks averaged across consecutive 1-s chunks of the 

spatiotemporal stimulus, with the exception of the file with "4div3" in the filename, which 

has been averaged across successive 4/3-s chunks. These aperture masks were used in 

analyzing the fMRI data from the prf experiment (1-s for the high-resolution preparation; 

4/3-s for the standard-resolution preparation). The files without "small" in the filename are 

the original (unresized and unaveraged) versions of the masks — these masks update at a 

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/prf/prf_screencapture.mp4


rate of 15 frames per second. Note that we provide .mp4 versions for convenience; 

however, the .mp4 files have some (very slight) compression artifacts in them, so be wary 

when using these files for actual analysis.

nsddata/stimuli/prf/RETWEDGERINGMASH*

Same information as RETBAR* except corresponding to the wedgering runs in the prf 

experiment.

Information regarding the floc experiment
 

nsddata/experiments/floc/floc_screencapture.mp4﻿

 

This movie is a screen capture of an example segment of the floc experiment.

screenshot from floc experiment

nsddata/experiments/floc/categories.tsv﻿

 

Names of the 10 categories used in the floc experiment. The order corresponds to the 

order in the analysis results.

 

nsddata/experiments/floc/domains.tsv﻿

 

Names of the 5 domains used in the floc experiment. The domains are in order and have a 

1-to-2 relationship to the categories. For example, the first domain consists of the first two 

categories, the second domain consists of the third and fourth categories, and so on.

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/floc/floc_screencapture.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/floc/categories.tsv
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/floc/domains.tsv


Information regarding the resting-state experiment

nsddata/experiments/resting/resting_screencapture.mp4

 

This movie is a screen capture of the beginning of the resting-state experiment (type 2, 

instructed-breath). Notice that after 12 seconds, the cross turns red, which instructs the 

subject to take a deep breath.

screenshot from resting-

Information regarding the NSD experiment
 

The 73,000 images used in the NSD experiment are a subset of the COCO images, specifically 

the 2017 train/val split (see http://cocodataset.org for details). NSD images were selected 

from the COCO database such that all of the NSD images have “stuff”, “panoptic”, and “coco” 

annotations. In addition, since the NSD experiment involved square stimulus presentation, we 

cropped COCO images using a specific method that attempted to minimize loss of semantic 

information in the images (details provided here: Experiments⁠ ).

 

COCO annotations can be accessed on the COCO web site. The following Python notebook is 

helpful for getting started:

  https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoDemo.ipynb 

 

nsddata/experiments/nsd/nsd_stim_info_merged.csv

 

This is a comma-separated text file that contains information related to the selection and 

preparation of the NSD images. After a header row, what follows is one row for each of the 

73,000 images used in the NSD experiment.

 

Column 1 is the 0-based image number (0-72999).

http://cocodataset.org/
https://slite.com/api/public/notes/NKalgWd__F/redirect
https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoDemo.ipynb


Column 2 (cocoId) is the ID number assigned to this image in the COCO database.

Column 3 (cocoSplit) is either “train2017” or “val2017”. The COCO web site 

designates different splits of images into training and validation sets. The NSD 

experiment does not involve any use of this designation (such as in the experimental 

design), but we provide this information just in case it is useful.

Column 4 (cropBox) is a tuple of four numbers indicating how the original COCO 

image was cropped. The format is (top, bottom, left, right) in fractions of image size. 

Notice that cropping was always performed along only the largest dimension. Thus, 

there are always two 0’s in the cropBox.

Column 5 (loss) is the object-loss score after cropping. See manuscript for more 

details, as well as the "Details on crop selection for COCO images" section below.

Column 6 (nsdId) is the 0-based index of the image into the full set of 73k images 

used in the NSD experiment. Values are the same as column 1. (Note that in some 

other cases, 73k IDs are specified as 1-based. Here the IDs are specified as 0-

based.)

Column 7 (flagged) is True if the image has questionable content (e.g. violent or 

salacious content).

Column 8 (BOLD5000) is True if the image is included in the BOLD5000 dataset 

(http://bold5000.github.io). Note that NSD images are square-cropped, so the 

images are not quite identical across the two datasets.

Column 9 (shared1000) is True if the image is one of the special 1,000 images that 

are shown to all 8 subjects in the NSD experiment.

Columns 10-17 (subjectX) is 0 or 1 indicating whether that image was shown to 

subjectX (X ranges from 1-8).

Columns 18-41 (subjectX_repN) is 0 indicating that the image was not shown to 

subjectX, or a positive integer T indicating that the image was shown to subjectX on 

repetitionN (X ranges from 1-8; N ranges from 0-2 for a total of 3 trials). T provides the 

trialID associated with the image showing. The trialID is a 1-based index from 1 to 

30000 corresponding to the chronological order of all 30,000 stimulus trials that a 

subject encounters over the course of the NSD experiment. Each of the 73k NSD 

images either has 3 trialIDs (if it was shown to only one subject) or 24 trialIDs (if it was 

shown to all 8 subjects).

 

nsddata/experiments/nsd/nsd_stim_info_merged.pkl

 

This contains the same information as the nsd_stim_info_merged.csv file, but is in Python-

readable pickle file format (use pandas to read).

 

nsddata/experiments/nsd/nsd_screencapture.mp4﻿

http://bold5000.github.io/
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/nsd/nsd_screencapture.mp4


 

This movie is a screen capture of one entire run of the nsd experiment.

screenshot from nsd experiment

nsddata/experiments/nsd/nsd_expdesign.mat

 

Contents:

<masterordering> is 1 x 30000 with the sequence of trials (indices relative to 10k)

<basiccnt> is 3 x 40 where we calculate, for each scan session separately, the 

number of distinct images in that session that have a number of presentations equal 

to the row index.

<sharedix> is 1 x 1000 with sorted indices of the shared images (relative to 73k)

<subjectim> is 8 x 10000 with indices of images (relative to 73k). the first 1000 are 

the common shared 1000 images. it turns out that the indices for these 1000 are in 

sorted order. this is for simplicity, and there is no significance to the order (since the 

order in which the 1000 images are shown is randomly determined). the remaining 

9000 for each subject are in a randomized non-sorted order.

<stimpattern> is 40 sessions x 12 runs x 75 trials. elements are 0/1 indicating when 

stimulus trials actually occur. note that the same <stimpattern> is used for all subjects.

 

Note: subjectim(:,masterordering) is 8 x 30000 indicating the temporal sequence of 73k-

ids shown to each subject. This sequence refers only to the stimulus trials (ignoring the 

blank trials and the rest periods at the beginning and end of each run).

 

Note: All of these indices (in the nsd_expdesign.mat file) are 1-based indices.

nsddata_stimuli/stimuli/nsd/nsd_stimuli.hdf5

 



This is a single .hdf5 file that contains all images used in the nsd experiment across all 

subjects. <imgBrick> is 3 channels x 425 pixels x 425 pixels x 73,000 images and is in 

uint8 format. These images are shown on a gray background with RGB value 

(127,127,127).

 

The images in the .hdf5 file constitute the official list of the 73k images. When we use the 

term ‘73k-ID’, this refers to an index into this list of 73k images (1-indexed).

 

There is a special common set of 1,000 images, which are a subset of the 73k. Each of the 

eight subjects sees the shared 1,000 images, as well as 9,000 unique images (with the 

caveat that some subjects did not complete all 40 NSD scan sessions).

 

Here is an example of how to use MATLAB to quickly load in the 10239th image.

im = permute(h5read('nsd_stimuli.hdf5','/imgBrick',[1 1 1 10239],[3 

425 425 1]),[3 2 1]);

 

nsddata/stimuli/nsd/shared1000/

 

In this folder, there are 1,000 standard RGB .png files (uint8, 425 pixels x 425 pixels x 3 

channels). Each file is named "sharedAAAA_nsdBBBBB.png" where AAAA ranges from 1 

through 1000 and BBBBB indicates the 73k-ID (1-indexed). These are the 1,000 shared 

images common to all subjects. Note that the 73k-IDs are in sorted order.

 

nsddata/stimuli/nsd/special100/

 

This folder contains a subset of the files in the “shared1000” folder. Of the shared 1,000 

images, there is a subset of 515 images that all 8 subjects saw for all 3 trials. From these 

515 images, we chose a subset of size 100 in order to maximally span semantic space. 

These specially chosen 100 images are contained in this folder. These 100 images were 

used in the nsdmeadows experiment and in the nsdmemory experiment.

 

nsddata/stimuli/nsd/special3/

 

This folder contains a subset of the files in the “shared1000” folder. The valence/arousal 

component of the nsdmeadows experiment involved the special100 images as well as 3 

additional images pulled from the subset of 515 images (as described above). These 3 

additional images were selected on the criterion of having strong negative valence.

 



nsddata/stimuli/nsd/shared1000.mp4﻿

 

A movie that rapidly shows the shared 1,000 images.

 

nsddata/stimuli/nsd/shared1000.tsv﻿

nsddata/stimuli/nsd/special100.tsv﻿

nsddata/stimuli/nsd/special3.tsv﻿

nsddata/stimuli/nsd/notshown.tsv﻿

Simple text files that contain the 73k IDs (1-indexed) that comprise the various sets of 

images. The "notshown" file indicates 73k IDs of images that were not shown to any NSD 

subject (due to the fact that not all 8 subjects completed all prescribed sessions).

Details on performance bonuses provided during 
NSD data acquisition

In each scan session from nsd11–20, the subject earned up to $15 extra bonus. The bonus 

consisted of $3 for achieving better than the mean performance attained by that subject in 

sessions nsd01–10 with respect to four metrics. These metrics included the general BOLD 

quality metric, the intentionally vague “performance metric” (which was actually the 

performance on easy trials), raw motion, and detrended motion (as described in the NSD data 

paper). The subject also received $3 for achieving a response rate higher than 99%.

In each scan session from nsd21–30, the subject earned up to $25 extra bonus. The bonus 

consisted of $5 for agreeing to participate in the resting-state runs conducted in those 

sessions, $5 if the physiological recordings maintained stability throughout the session, $5 for 

staying awake and fixated during each resting-state run (thus, $10 in total was possible), and 

$5 for achieving the “performance metric” above the mean observed for that subject in 

sessions nsd01–20.

In each scan session from nsd31–40, the subject earned up to $35 extra bonus. The bonus 

consisted of $20 for participating in that scan session, $5 for achieving response rate higher 

than 99%, and $10 for agreeing to participate in 1–2 additional miscellaneous scanning runs 

unrelated to NSD.

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/stimuli/nsd/shared1000.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/stimuli/nsd/shared1000.tsv
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/stimuli/nsd/special100.tsv
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/stimuli/nsd/special3.tsv
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/stimuli/nsd/notshown.tsv


Information regarding the nsdpostbehavior 
experiments

nsddata/experiments/csf/csf_screencapture.png

 

This screenshot shows how contrast sensitivity functions were quickly measured.

csf_screencapture.png

nsddata/experiments/flicker/flicker_screencapture1.mp4﻿

nsddata/experiments/flicker/flicker_screencapture2.mp4﻿

 

These video captures give a sense of the experiment that assessed the chromatic 

sensitivity of each subject.

screenshot from flicker 

Information regarding the nsdmemory experiment
The experiment presentation code is available at https://github.com/hulacon/nsd-memory

Custom code to analyze the data is available at https://github.com/futingzou/nsdFinalMem﻿

nsddata/experiments/nsdmemory/nsdmemory_screencapture.mp4﻿

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/flicker/flicker_screencapture1.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/flicker/flicker_screencapture2.mp4
https://github.com/hulacon/nsd-memory
https://github.com/futingzou/nsdFinalMem
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/nsdmemory/nsdmemory_screencapture.mp4


This video capture shows what the nsdmemory experiment is like.

Screenshot from nsdmemory experiment

Information regarding the nsdmeadows 
experiment

nsddata/experiments/meadows/meadows_screencapture.mp4﻿

 

This movie shows an example of what subjects experienced during the nsdmeadows 

experiment which was conducted using the web-based Meadows platform.

screenshot from meadows experiment

Presentation files for experiments

nsddata_other/experimentcode/

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/meadows/meadows_screencapture.mp4
http://meadows-research.com/


This directory is an archive of materials used to conduct the various experiments in the 

NSD dataset.

Details on crop selection for COCO images

To select the optimal cropping box for each image, we computed an “object loss” score for 

each crop. Object loss was defined as the fraction of objects that are cropped by more than 

50% of their total pixel count. We used only “thing” annotations to compute object loss. We did 

not use “stuff” annotations because these are often large and redundant, so that severely 

cropping them can often result in large object-loss scores but very little change to the semantic 

content of the image. When calculating object loss we did not include “things” that occupied 

less than 0.5% of the total pixels in the image. Finally, we imposed a bias toward center crops, 

selecting left, right, top, or bottom crops if object loss of the center crop exceeded the object 

loss of the left/right or top/bottom crops by more than 25%. For portrait-oriented images 

containing people, we always used the top crop, as these images almost always depicted 

human faces in the upper third of the image.

We examined all cropped images in the “val” portion of the train/val split and rejected any 

image, regardless of object loss score, for which cropping caused obvious “semantic loss”. 

 

When examining the “val” images we observed the relationship between object loss and 

semantic loss, and noted several trends that guided our selection/rejection of “train” images.

 

First, we found that for landscape-oriented images an object-loss score of 0.0 was a reliable 

indication of negligible “semantic loss”. Thus, we automatically accepted all landscape-

oriented images in the “train” set with an object-loss score of 0.0.

 

Second, we found that for landscape-oriented images crops resulting in 0.0 < object loss < 0.2 

occasionally, but not often, induced appreciable semantic loss. Semantic loss occurred when 

small but key peripheral objects (i.e., a soccer ball) were cropped. We also noted that when 

images depicted a small number of salient objects, such as people, captions often indicated 

number of the objects (e.g., “four people sitting around a table”). In these cases crops 

sometimes made the picture inconsistent with the quantities stated in the captions. Thus we 

screened all landscape-oriented images in the training set with 0.0 < object-loss < 0.2 for 

special cases such as these, comparing images to their written captions where necessary.

 



Third, we found that for portrait-oriented images crops resulting in object loss = 0.0 

occasionally, but not often, induced appreciable semantic loss. These images tended to 

contain a small number of objects with two distinct kinds of terrain in the bottom (e.g., sand, 

floor) and top (e.g., sky, ceiling) of the image. Cropping the bottom terrain often 

decontextualized images, for example by reducing “person running on a beach” to “person 

running”. Many portrait-oriented images depicted tall buildings towering over a semantically 

meaningful scene such as a flea-market or a street parade. Thus, we screened all portrait-

oriented images in the “train” set with object-loss = 0.0 for special cases such as these, 

comparing images to their written captions where necessary.

After screening the “train” and “val” images, the 73,000 images selected for NSD had a 

maximum object loss of 0.167 and a median of 0.08. 



Raw data
The NSD dataset can be conceptually divided into raw data (i.e. data with little or no additional 

processing) and prepared data (i.e. transformations of the raw data that have been performed 

in order to make the data more accessible and more convenient to use). The pre-processing 

methods that we used to create the prepared data are formally described in the NSD data 

paper, with technical details documented in this NSD Data Manual. Most of the remainder of 

the data manual after this page is specific to the prepared data and not the raw data. Note that 

a few of the scan sessions are currently held out from the public release (i.e. the raw data for 

this sessions are listable but not downloadable); see Overview of the data⁠  for more 

information.

nsddata_rawdata/

This contains the raw data that were collected as part of the NSD effort. It is organized in 

BIDS format. Note that the data contained here are primarily the structural, functional, and 

diffusion MRI scans. Some of what might be considered raw data are contained elsewhere 

in the NSD directory structure. For example, various behavioral measures (see 

Behavioral data⁠ ) are provided in nsddata; stimulus images and experimental information 

are provided in nsddata_stimuli and nsddata (see Experiments⁠ ); and raw eyetracking 

data are provided in nsddata_timeseries (see Time-series data⁠ ).

Naming of the different "tasks" in the raw BIDS 
data:

The main NSD experiment is like "task-nsdcore_run-NN" where NN ranges from 01 to 12. 

The resting-state experiment is like "task-rest_run-N" where N ranges from 1 to 2. In the 

scan sessions involving resting-state, the chronological acquisition order was:

rest1

nsd01

nsd02

nsd03

nsd04

nsd05

nsd06

nsd07

https://slite.com/api/public/notes/AGEte5w9Nq/redirect
https://slite.com/api/public/notes/fRv4lz5V2F/redirect
https://slite.com/api/public/notes/NKalgWd__F/redirect
https://slite.com/api/public/notes/vjWTghPTb3/redirect


nsd08

nsd09

nsd10

nsd11

nsd12

rest2

The prf experiment is like "task-prfbar_runNN" where NN ranges from 01 to 03 and "task-

prfwedge_runNN" where NN ranges from 01 to 03. The floc experiment is like "task-

floc_runNN" where NN ranges from 01 to 06. The chronological acquisition order in the 

prffloc scan session was:

prfbar01

prfwedge01

floc01

floc02

prfbar02

prfwedge02

floc03

floc04

prfbar03

prfwedge03

floc05

floc06

The nsdsynthetic experiment is like "task-fixation_runNN" where NN ranges from 01 to 04 

and "task-memory_runNN" where NN ranges from 01 to 04. Note the fixation and memory 

were interleaved and acquired in the following chronological order:

fixation01

memory01

fixation02

memory02

fixation03

memory03

fixation04

memory04

The nsdimagery experiment is like "task-vis[A-C]", "task-att[A-C]", and "task-img[A-

C]_runNN" where NN ranges from 01 to 02. The chronological order was:

visA

attA

imgA01

visB

attB



imgB01

visC

attC

imgC01

imgA02

imgB02

imgC02



Time-series data
This section covers pre-processed fMRI time-series data and other measures that exist at the 

level of the time-series data, which include motion parameter estimates, design matrix 

information (i.e. which stimulus was shown when), physiological data, and eyetracking data.

Pre-processing of the functional data involved two operations. First, a temporal resampling was 

performed using a cubic interpolation. The time-series for each voxel was upsampled to either 

1 s (high-resolution version) or 1.333 s (standard-resolution version) and in doing so, slice-time 

differences were corrected. Note that the first time point (after pre-processing) is coincident 

with the start of the acquisition of the very first volume (i.e. the time of the first RF pulse). 

Second, a spatial resampling was performed using a cubic interpolation. Each volume was 

sampled at either 1 mm (high-resolution version) or 1.8 mm (standard-resolution version). This 

operation corrects for head motion, EPI distortion, gradient nonlinearities, and across-scan-

session alignment. Note that no high-pass filtering, nuisance regression, nor units conversion 

are performed for the pre-processed functional data.

Pre-processed time-series data
 

nsddata_timeseries/ppdata/subjAA/func*/timeseries/timeseries_BB_runCC.nii.gz

 

These are the pre-processed fMRI volumes. The only processing that has been performed 

for these data is a temporal resampling and a spatial resampling. To save space, a liberal 

brain mask has been used to zero-out the data for non-brain voxels (same mask for all 

data from a given subject). "BB" is either prffloc (referring to the scan session in which the 

prf and floc experiments were conducted) or sessionNN (where NN is the number of the 

core NSD scan session). Note that scan sessions involving resting-state acquisition 

consist of 14 runs (as opposed to the typical 12 runs), so in these cases CC ranges from 

01 to 14.

 

For the high-resolution (1-mm) preparation, the data are sampled at 1-s and contain 301 

volumes in each run (for the core NSD experiment). For the standard-resolution (1.8-mm) 

preparation, the data are sampled at 1.333-s and contain 226 volumes in each run (for the 

core NSD experiment). In both cases, the time associated with the first volume 

corresponds to the start of the acquisition of the first volume (first RF pulse).



For the prffloc scan session, there are 12 runs in the following order: prfbar, prfwedge, floc, 

floc, prfbar, prfwedge, floc, floc, prfbar, prfwedge, floc, floc.

Motion parameter estimates

nsddata_timeseries/ppdata/subjAA/func*/motion/motion_BB_runCC.tsv

 

Motion parameter estimates (SPM style). These reflect rigid-body transformations that 

indicate how each given fMRI volume is aligned to the reference fMRI volume (which is 

taken to be the first volume acquired in each scan session).

Note that each fMRI volume is spatially undistorted before estimating the rigid-body 

motion. Also, note that the motion parameter estimation is done with the first volume as the 

reference. However, the full pre-processing involves also estimating an affine 

transformation that aligns the data from each given scan session to the master space 

defined for each subject; this affine transformation is concatenated with the rigid-body 

transformations in order to generate the final pre-processed fMRI data.

In the .tsv files, the first 3 columns correspond to translation parameters (mm) and the 

second 3 columns correspond to rotation parameters (radians). The number of rows 

matches the number of volumes in the pre-processed time-series data. Positive on the first 

column means the brain is displaced towards the posterior direction; positive on the 

second column means the brain is displaced towards the subject’s right; positive on the 

third column means the brain is displaced towards the inferior direction; positive on the 

fourth column (roll) means the head is twisted such that the nose is fixed and the top of the 

head goes towards the subject’s right; positive on the fifth column (pitch) means the ears 

are fixed and the head nods up; positive on the sixth column (yaw) means the top of the 

head is fixed and the head twists such that the nose goes to the subject’s left. 

Design matrix information

Below, we document design matrix files for the NSD and floc experiments. Note that the pre-

preprocessed fMRI data (and motion files) extend for one volume beyond the number of 

elements contained in the .tsv design files. This is expected behavior (due to how the pre-

processing is performed); to achieve correspondence to the .tsv design files, one can simply 

trim (drop) the trailing volumes of the fMRI (and motion) data.



nsddata_timeseries/ppdata/subjAA/func*/design/design_sessionBB_runCC.tsv

 

This is a specification of the design of the NSD experiment. Each file is a column vector of 

integers, and the number of elements corresponds to the number of volumes in the 

functional data preparation for a given run. Each element is either N where N is a 73k ID 

(1-indexed), marking the onset of a presentation of that image, or 0 for all other elements. 

Note that in order to achieve correspondence to the motion and fMRI time-series data files, 

the run number CC is 1-12 for scan sessions that contained only NSD runs but is 1-14 for 

scan sessions that included resting-state runs (in this case, the first (1) and last (14) runs 

are resting-state runs and the middle 12 runs are the NSD runs). Also, note that in the 

case of resting-state runs, the .tsv file consists simply of all 0s. Finally, note that the 

information contained in these .tsv files is redundant with respect to the 

nsd_expdesign.mat file (see Experiments⁠ ), but is provided in this .tsv format for your 

convenience.

nsddata_timeseries/ppdata/subjAA/func*/design/design_floc_runCC.tsv

This is a specification of the design of the floc experiment. Each file is a column vector of 

integers, and the number of elements corresponds to the number of volumes in the 

functional data preparation for a given run. Each element is either N where N is between 1 

and 10 marking the onset of one of the 10 categories in the floc experiment, or 0 for all 

other elements. Note that CC ranges from 1 through 6 (even though the 6 floc runs were 

acquired chronologically as runs 3, 4, 7, 8, 11, and 12 in the prffloc scan session).

Physiological data
 

Pulse and respiratory data were collected in NSD scan sessions 21-30 (same as when the 

primary set of resting-state data are acquired).

 

nsddata_timeseries/ppdata/subjAA/physio/physio_BB_runCC_DDDD.tsv

 

CC ranges from 1 to 14 (chronological acquisition order), and DDDD is either ‘puls’ or 

‘resp’, indicating pulse and respiratory data, respectively. Each file consists of a column of 

numbers (typically numbering 15040 or 15041). The numbers in the .tsv file contain the 

actual physiological data samples extracted from the Siemens files. It appears that they 

can be interpreted as close to exactly 50-Hz sampling (more on this below). The data 

samples start immediately after the AcquisitionTime of the first DICOM volume and end 

https://slite.com/api/public/notes/NKalgWd__F/redirect


immediately after the completion of the last DICOM volume. Note that no actual analysis of 

the physiological data has been performed (aside from the timing extraction).

 

Notes on how we handled the synchronization of the physiological data and the fMRI data: 

Our strategy was to assume the accuracy of the LogStartMDHTime and 

LogStopMDHTime values stored in the Siemens files. We assume that these times 

correspond to the absolute time of the first and last physiological data samples. We also 

assume that the data samples come in equally spaced in time. In order to synchronize with 

the fMRI data, we extracted the AcquisitionTime stored in the DICOM headers of the first 

volume of each run, and used that time accordingly along with an empirical measurement 

of the average DICOM duration as recorded by the scanner internal clock.

 

To interpret the timing of a .tsv file, the following is suggested. Since the TR is 1600 ms 

and since we acquired 188 volumes in each run, we expect the fMRI acquisition to last 

from time 0 s through time 300.8 s. Thus, if there are say, 15040 samples in a given .tsv 

file, we can assume that the time points corresponding to these samples is something like 

linspace(0,300.8,15040). Moreover, the acquisition times for each of the raw 188 fMRI 

volumes would correspond to 0, 1.6, 3.2, and so on. In pre-processing, we correct for slice 

time differences and also upsample the data to either 0.999878 s (for the func1mm 

preparation) or 0.999878*(4/3) = 1.333171 s (for the func1pt8mm preparation). Thus, the 

times corresponding to the pre-processed fMRI time-series volumes would be 0, 

0.999878, 1.999756, and so on (for func1mm) or 0, 1.333171, 2.666342, and so on (for 

func1pt8mm).

 

Occasionally, a physio .tsv file will have a different number of samples (e.g. 15000). It is 

not clear what the cause of this is (perhaps dropped frames?). We suggest to proceed as 

described above and assume that the first and last frames still correspond to 0 s and 300.8 

s.

Eyetracking data

Note that only the NSD runs (and not the resting-state runs) have associated eyetracking video 

and data. For this reason, the files from a given scan session may start with run02 and this is 

correct behavior (since sessions with resting-state data have resting-state runs as run01 and 

run14).

Note that the "CC" in the runCC filename is in chronological acquisition order. If you are 

matching these to the raw BIDS data, please see the Raw data⁠  page for how the naming 

https://slite.com/api/public/notes/D__44exzOj/redirect


scheme is designed.

nsddata_timeseries/ppdata/subjAA/eyevideo/eyevideo_BB_runCC.mp4

This is a video capture of the eyetracker computer's display (via a cell phone). This may 

be a useful complement to the actual eyetracking data (e.g., for informal inspection of the 

subject's eye and/or for when the eyetracker failed to lock onto the subject's pupil).

All of the .mp4 clips have been cropped to exactly match the fMRI data acquisition 

duration (i.e., from the start of the very first fMRI volume through the acquisition of the very 

last fMRI volume in a given run). This cropping was done manually by a human on basis of 

the audio cues from the video recording; the approximate accuracy of this manual 

procedure is estimated to be about +/- 1 s. For example, the expected duration of an .mp4 

file corresponding to 1 NSD run is 188*1.6 s = 300.8 s.

To protect privacy, the .mp4 files have had the audio stripped (only video is present). The 

.mp4 files often begin with a few seconds of a black screen — this is correct behavior and 

is due to video codec issues. When interpreting the timecodes from these video files, be 

careful to ensure that whatever software you are using is using precise timecodes as 

opposed to approximate estimates.

sample frame from one of the videos

nsddata_timeseries/ppdata/subjAA/eyedata/eyedata_BB_runCC.edf

This is the raw eyetracking data file obtained from the EyeLink device. The eyetracker was 

run at 2000 Hz. The BOLDscreen was run at 1920 x 1080. Note that 8.4° of visual angle 

(the size of the NSD stimuli) corresponds to 714 pixels on the BOLDscreen.



The utility edf2asc can be used to convert the .edf file to ASCII format. The edf2asc utility 

is available from SR Research.

Keep in mind that eyetracking data acquisition starts well before actual fMRI data 

acquisition (approximately 30-90 seconds before). To determine precise synchronization 

between the eyetracking data and other measures (e.g. the fMRI data), the stimulus 

computer issues a synchronization message (using PsychToolbox) to the eyetracker 

computer:

Eyelink('Message','SYNCTIME')

and this is done right before the actual experiment starts (i.e. right before the display of the 

very first stimulus frame) and right after the experiment ends (i.e. right after the display of 

the very last stimulus frame). For example, in a sample .edf file for an NSD run, we find that 

there is a SYNCTIME message that occurs at timestamp 12829505 and timestamp 

13129473. Notice that 13129473-12829505 = 299968, which is interpreted as 299.968 s. 

The experiment conducted in NSD runs is indeed intended to be 300 s long. If we use the 

precise time estimates (see Technical notes⁠ ), we find that 0.999878 s * 300 = 

299.9634 s, which is quite close to the duration indicated by the eyetracking timestamps. 

(However, keep in mind that the fMRI data acquisition extends a little bit longer than the 

actual experiment duration (e.g., 1 NSD run consists of 188 volumes * 1.6 s = 300.8 s). 

See Technical notes⁠  for more details.)

nsddata/inspections/eyetrackinginspections/pupil_subjAA_BB_runCC.jpg

This shows the pupil area over time before (top panel) and after preprocessing (bottom 

panel). Detected blinks and noise shown in orange. Each file shows the data of a single 

scanning run and subject. 

nsddata/inspections/eyetrackinginspections/XY_subjAA_BB_runCC.jpg

This shows the preprocessed gaze positions as 2D scatter plot (top left) and as line plots 

for horizontal (X, top right) and vertical gaze coordinates (Y, bottom right panel). It further 

shows a histogram of the Euclidean distances between each recorded gaze position and 

the median gaze position (bottom left panel). Removed blinks and noise marked in orange.

nsddata_timeseries/ppdata/subjAA/eyedata_preprocessed.mat

This contains the pre-processed eyetracking data. The data is stored in a cell array named 

“data”. Each cell represents one scanning run. Following fields are included.

https://www.sr-support.com/
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samples: Raw data cut to imaging session

samples_clean: Preprocessed data (no blinks & noise)

samples_blinks: Blinks & noise removed from samples_clean

filename: Name of the imported raw data file (after edf-to-ascii conversion)

euclDist: Euclidean distance to median gaze position over time

messages: EDF-file header and recorded messages 

saccs: Saccade on-/offsets detected by the Eyelink

blinks: Blink on-/offsets detected by the Eyelink

valid_ratio: Percent valid samples after preprocessing

Note that “samples”, “samples_clean” and “samples_blinks” all contain 2D matrices with time 

stamps (column 1), horizontal gaze position (column 2), vertical gaze position (column 3) as 

well as pupil area (column 4) over time (rows).



Informational files
This section covers various informational files and other files relevant to how the NSD data 

were pre-processed.

Informational files

nsddata/information/knowndataproblems.txt﻿

 

This is a detailed, comprehensive list of all known data problems. Most of these problems 

are very minor, but we are deliberately comprehensive so that the user understands what 

is in the data.

 

nsddata/information/nsddatacollection.xlsx﻿

 

A table that provides an overview of all of the NSD data collected.

nsddatacollection.xlsx

nsddata/information/nsddemographics.xlsx﻿

 

A table that provides demographic information (age, sex) on the NSD subjects as well as 

basic information concerning vision- and language-related abilities. The table also 

provides behavioral data for TOWRE and VVIQ.

nsddemographics.xlsx

nsddata/information/nsdsessionlog.xlsx﻿

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/information/knowndataproblems.txt
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/information/nsddatacollection.xlsx
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/information/nsddemographics.xlsx
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/information/nsdsessionlog.xlsx


A table that provides information at the level of individual scanning sessions. Includes 

information such as time of session, notes on eyetracking and physiology, sleepiness 

ratings, mood, stress, hunger, general notes on scanning, and subject feedback.

nsdsessionlog.xlsx

nsddata/information/runmetrics.mat

 

This file contains some data quality metrics that are computed at the level of individual 

NSD runs. There are two variables:

‘runmetrics’ is 8 subjects x 40 sessions x 12 runs x 7 metrics. The seven metrics, in 

order, are (1) tSNR (this was computed by taking the raw functional volumes, 

computing the voxel-wise mean of each voxel divided by the voxel-wise standard 

deviation after quadratic detrending of each voxel’s time-series, and the calculating 

the median value observed across a liberal whole-brain mask), (2) FD (this was 

computed on the 1.8-mm version of the pre-processed data by computing the 

absolute value of the temporal derivative of each of the six motion parameters in each 

run, computing a weighted sum according to weights [1 1 1 50 50 50], and calculating 

the mean FD across the volumes in the run), (3) ON-OFF R^2 (for the 1.8-mm version 

of the data, we fit a simple ON-OFF GLM to the voxel time-series, and we extract the 

variance explained for each run and compute the median variance explained across 

voxels in the nsdgeneral ROI), (4) response rate (percentage of trials on which a 

button was pressed), (5) percent correct (percentage of trials for which the subject 

pressed the correct response), (6) easy trials (percentage of easy trials (trials that are 

memory events for an image seen earlier in the scan session) for which the subject 

pressed the correct response; can be NaN for cases where there are zero easy trials), 

and (7) number of easy trials (the number of easy trials that actually occurred; this is 

useful because some runs might have zero or very few easy trials).

‘runmetricsRS’ is 8 subjects x 40 sessions x 2 runs x 2 metrics. The two metrics, in 

order, are tSNR and FD, as described above. When acquired, the resting-state runs 

were acquired as the very first and very last run in a given session.

 



Note that because not all subjects participated in all 40 sessions, some of the values in 

‘runmetrics’ are NaN. Also, note that because resting-state data were acquired in only 

certain sessions, some of the values in ‘runmetricsRS’ are NaN. Also, note that for subject 

8’s second NSD session, the fourth run was actually split across two distinct scan 

sessions (on different days); when computing FD, we compensated for this discontinuity 

(by dropping the appropriate volume), and when computing tSNR, we considered only the 

first segment of the fourth run. Also, note that for subject 1, session 2, run 2, there was 

complete MR signal loss for a few volumes in the middle of the run, and for this reason the 

tSNR values are abnormally low for that run (in the pre-processing of the data, 

compensation was applied to appropriately deal with this issue).

nsddata/information/b3pcnum_*.tsv

This text file contains a 2D matrix of dimensionality 40 sessions x 8 subjects. The entries 

indicate the number of nuisance regressors chosen by GLMdenoise for each NSD scan 

session. NaNs indicate scan sessions that subjects did not participate in.

Files related to pre-processing

nsddata/templates/expert.opts

 

FreeSurfer configuration file that was used.

 

nsddata/templates/FreeSurferColorLUT.txt

 

Information file copied from the FreeSurfer software package.

 

nsddata/templates/hrfs_*.mat

 

Each of these files contains a variable ‘hrfs’ that has dimensions time-points x 20 HRFs. 

The first time point is coincident with trial onset. There are 20 different HRFs comprising 

the library of HRFs used to estimate voxel-specific HRFs. The ‘func1mm’ version has a 

sampling rate of 1-s whereas the ‘func1pt8mm’ version has a sampling rate of 1.333-s.

 

nsddata/templates/hrfparams.mat

 



Contains HRF parameters (using the parametric function implemented in spm_hrf.m) that 

were determined by fitting each of the HRFs in the library of HRFs (as described above). 

The variable ‘params’ is 20 different HRFs x 7 parameters.

nsddata/inspections/hrfparams_example.*

 

An example MATLAB script that generates an figure illustrating the contents of the 

hrfparams.mat file.

nsddata/templates/MNI152*

 

MNI template files copied from fsl-5.0.7/fsl/data/standard. These were used in the pre-

processing of the NSD data.

nsddata/templates/T1_2_MNI152_2mm.cnf

 

Configuration file used in the T1-to-MNI alignment procedure.



Data inspections
We generated a variety of images and movies that provide a comprehensive look at the quality 

of the NSD data and pre-processing results.

In the various inspections, note that "sess00" corresponds to the prffloc scan session. Also, 

note that inspections are included even for the held-out data (now released). For example, for 

subj01, sess38-sess40 are the 3 held-out NSD scan sessions (now released), sess41 is the 

nsdsynthetic scan session, and sess42 is the nsdimagery scan session. As another example, 

for subj08, sess28-sess30 are the 3 held-out NSD scan sessions (now released).

nsddata/inspections/b3noiseceiling.mp4﻿

Same as Supplementary Video 10 of the data paper. This shows the group-average b3 

noise ceiling results on a rotating brain.

screenshot from 

nsddata/inspections/coregistration/T1-T2-EPI.mp4﻿

nsddata/inspections/coregistration/T1-TOF.mp4﻿

nsddata/inspections/coregistration/T2-SWI.mp4﻿

Same as Supplementary Video 1 of the data paper. These show the various modalities 

collected on the NSD subjects (T1, T2, EPI, TOF, SWI). The figures show the end-result of 

pre-processing and are all in the common anatomical space set by the T1 volume.

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/b3noiseceiling.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/coregistration/T1-T2-EPI.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/coregistration/T1-TOF.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/coregistration/T2-SWI.mp4


screenshot from T1-T2-EPI.mp4

nsddata/inspections/flattenedsurfaces/

Screenshots showing where cuts were made to the fsaverage surface and each individual 

NSD subject’s surface in order to allow flattening of the cortical surfaces. Cuts were 

placed in approximately consistent locations across subjects.

subj01_lh_cut.png

nsddata/inspections/fsaveragecheck.mp4﻿

Same as Supplementary Video 3 of the data paper. This movie shows the results of 

curvature-based fsaverage alignment for the NSD subjects. 

screenshot from fsaveragecheck.mp4

nsddata/inspections/functionaltostructural/

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/fsaveragecheck.mp4


These images show, for each NSD subject, the alignment achieved between the EPI data 

and the T2 anatomical volume. One result is shown for an affine transformation, and 

another result is shown for the nonlinear ANTS transformation. The ANTS transformation 

is used for the prepared NSD data.

nsddata/inspections/gradunwarp/

Sample figures illustrating the size of the gradient nonlinearity effect at the two different 

scanners used (3T and 7T).

nsddata/inspections/grandmean.mp4﻿

nsddata/inspections/grandmeansurface.mp4﻿

nsddata/inspections/grandR2.mp4﻿

nsddata/inspections/grandR2surface.mp4﻿

Same as Supplementary Videos 6-9 in the data paper. These movies show the stability of 

the mean EPI and of BOLD signal strength across all scan sessions for all subjects.

screenshot from grandmeansurface.mp4

nsddata/inspections/HRT2/

Figures illustrating the alignment achieved for the high-resolution T2 volume acquired for 

each NSD subject. The figures include the small box used for alignment (mask); the high-

res T2 volume masked by this box (masked); the full high-res T2 volume (raw); manually 

defined MTL labels (rawlabels); resliced volume from the T2 anatomy masked by the box 

(T2matched_masked); and the full resliced volume from the T2 anatomy (T2matched).

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/grandmean.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/grandmeansurface.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/grandR2.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/grandR2surface.mp4


subj01_masked.png

nsddata/inspections/MNIcheck.mp4﻿

Same as Supplementary Video 4. This shows the quality of the volume-based nonlinear 

MNI alignment.

screenshot from MNIcheck.mp4

nsddata/inspections/motioninspections*

At-a-glance inspection of all motion parameter estimates for all subjects in all sessions. 

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/MNIcheck.mp4


subj01_sess32.png

nsddata/inspections/physioinspections*

At-a-glance inspection of physiological data for all subjects in all sessions.

physioinspections_resp/subj01_sess25.png

nsddata/inspections/randomscrubbing.mp4﻿

This movie shows an inspection of the overall stability of the pre-processed fMRI data. For 

each subject, we show 100 volumes randomly picked over time (all runs, all scan 

sessions). 

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/randomscrubbing.mp4


screenshot from randomscrubbing.mp4

nsddata/inspections/rawdatamovies/

Same as Supplementary Video 5. For one example run (NSD session 10, run 6), we show 

movies of both the raw fMRI volumes and the pre-processed fMRI volumes for each NSD 

subject.

screenshot from 

nsddata/inspections/rois/

A variety of visualizations of the ROIs provided with the NSD dataset.

prf-visualandecc/subj01_prf-



nsddata/inspections/sessionwise/

For each NSD subject, we inspect the mean EPI and ON-OFF R^2 results in each scan 

session (1.8-mm preparation).

subj01/R2_sess09.png

nsddata/inspections/subjectmontages/

At-a-glance inspection of all NSD subjects' cortical surface reconstructions, including how 

well they align to the fsaverage template.



native.png

nsddata/inspections/surfaceinspections/

Same as Supplementary Video 2 from the data paper. These movies show 3 views of each 

subjects' T1 anatomy. The obtained FreeSurfer cortical surface reconstructions are 

indicated. 

screenshot from subj03_sagittal.mp4

nsddata/inspections/surfacevisualizations/

A variety of different surface maps visualizing different aspects of the NSD dataset.

bNnc - These are noise ceilings computed for the different beta versions (b1, b2, b3). 

The noise ceilings reflect the case of 3 trials being averaged together. The color range 

is [0 75] with a jet colormap.



b3R2 - these are GLM R^2 values for the b3 GLM model. The values range from 0% 

to 100%. For display, the values are divided by 100, square-rooted, and then 

visualized using a range of [0 1] with a hot colormap.

[corticalsulc,HCP_MMP1,Kastner2015,nsdgeneral,streams] - These are 

visualizations of various ROI collections defined on fsaverage.

curvature - These are visualizations of binarized curvature values.

mean - These are visualizations of the mean fMRI signal using a range of [0 2000] 

with a gray colormap.

probmap - These are visualizations of the fraction of subjects that have a given ROI 

at each fsaverage vertex. The range is [0 1] with a copper colormap. Values that are 

equal to 0 are thresholded away.

R2 - These are R^2 values from the simple ON-OFF GLM model fitted to the NSD 

data. Values range from 0 to 100%. For display, values are divided by 100, square-

rooted, and then visualized using a range of [0 1] with a hot colormap.

signaldropout - These are regions deemed to suffer from signal dropout (using 

methods described in the data paper). The maps are binary for each subject. The 

group result is the average of binary values across subjects. All are visualized using 

[0 1] with a winter colormap.

surfaceimperfections - These are regions deemed to suffer from cortical surface 

reconstruction errors (as described in the data paper). The maps are binary for each 

subject. The group result is the average of binary values across subjects. All are 

visualized using [0 1] with a winter colormap.

valid - These are indications of which vertices have valid data during the NSD 

experiment. The binary values are averaged across sessions conducted for a given 

subject. The color range is [0 1] with a jet colormap.

Note that "fsaverageflat" refers to a flattened version of the fsaverage surface, whereas 

"subjNNflat" refers to a flattened version of subject NN's native surface.



Behavioral data
This section covers behavioral data acquired for the NSD dataset. Note that some behavioral 

data is provided in nsddemographics.xlsx (as documented in Informational files⁠ ).

NSD experiment

nsddata/ppdata/subjAA/behav/responses.tsv

 

This is a tab-separated text file that contains all behavioral data from the NSD experiment 

for subject AA. After a header row, what follows is one row for every stimulus trial 

encountered by the subject. Stimulus trials from different runs and scan sessions are 

concatenated together.

 

 Column 1 (SUBJECT) is the subject number (1-8).

 Column 2 (SESSION) is the session number (1-40).

 Column 3 (RUN) is the run number (1-12).

 Column 4 (TRIAL) is the stimulus trial number (1-63 (odd runs) or 1-62 (even runs)). 

Note that the numbering of stimulus trials ignores (skips over) blank trials.

 Column 5 (73KID) is the 73k ID of the presented image. (Note that here, the 73k IDs 

are provided as 1-based indices.)

 Column 6 (10KID) is the 10k ID of the presented image. (Note that here, the 10k IDs 

are provided as 1-based indices.)

 Column 7 (TIME) is the trial start time (i.e. time that the image comes on) as a 

MATLAB serial date number. The units are days. Time 0 is defined as the beginning 

(midnight) of the day that the subject’s first NSD core scan session took place.

 Column 8 (ISOLD) is 0 (the image is novel) or 1 (the image is old).

 Column 9 (ISCORRECT) is 0 (subject’s response was incorrect) or 1 (subject’s 

response was correct).

 Column 10 (RT) is the reaction time in milliseconds (time between trial start time and 

button-press time).

 Column 11 (CHANGEMIND) is whether this is a trial that involved more than one 

button press (0 = no, 1 = yes, NaN = no buttons pressed). We score only the final 

button pressed by the subject.

 Column 12 (MEMORYRECENT) is the number of stimulus trials in between current 

and most recent presentation. 0 means the current and most recent presentation 

followed one another (no stimulus trials in between).

https://slite.com/api/public/notes/TL2ltDZ75o/redirect


 Column 13 (MEMORYFIRST) is the number of stimulus trials in between current and 

second most recent presentation. If there has been only one previous presentation, 

this is NaN.

 Column 14 (ISOLDCURRENT) is 0 (the image is novel) or 1 (the image is old) with 

respect to acting as if the experiment included only the current session.

 Column 15 (ISCORRECTCURRENT) is 0 (subject’s response was incorrect) or 1 

(subject’s response was correct) with respect to acting as if the experiment included 

only the current session.

 Column 16 (TOTAL1) is the total number of 1s ("novel") pressed during this trial. Will 

be a non-negative integer.

 Column 17 (TOTAL2) is the total number of 2s (“old”) pressed during this trial. Will 

be a non-negative integer.

 Column 18 (BUTTON) is the button pressed by the subject (1 = button 1, 2 = button 

2, NaN = no buttons pressed). Note that there might be multiple buttons pressed 

during a trial; we score only the final button pressed (and consider the very first of a 

series of repeated presses of the same button).

 Column 19 (MISSINGDATA) is 0 (button presses were recorded) or 1 (buttons failed 

to be recorded). This is very rare (it happened in two runs (see 

knowndataproblems.txt)), and if it happens, it happens at the level of entire runs. In 

the case that buttons failed to be recorded, note that columns 9-11 and 15-18 are 

necessarily NaN.

 

Note that columns 12-13 are NaN for the case of novel images. Note that columns 9-11, 

15, and 18 are NaN if no button is pressed on a given trial.

prf experiment

nsddata/bdata/prf/

Results from the prf experiment. For each subject, <results> is [A,B,C] x 6 runs, where A is 

the total number of color changes, B is the number of hits, and C is the number of false 

alarms (extra button presses).

floc experiment

nsddata/bdata/floc/



Results from the floc experiment. For each subject, <results> is [A,B,C] x 6 runs, where A 

is the total number of trials, B is the number of hits, and C is the number of false alarms.

nsdpostbehavior

nsddata/bdata/cmtf/

Results from the Cambridge Memory Test for Faces experiment.

nsddata/bdata/flicker/

Results from the flicker-based assessment of chromatic sensitivity. While maintaining 

fixation, participants adjusted intensities of red, green, and blue channels on the 

BOLDscreen display until minimal luminance flicker was perceived. The basic presentation 

setup was to rapidly switch between two colors (A and B), performing this 15 times in 1 

second. Three different trial types were conducted: (1) fix the green channel to 26, ignore 

blue, and vary the red channel, (2) fix the red channel to 77, ignore green, and vary the 

blue channel, and (3) fix the green channel to 26, ignore red, and vary the blue channel.

nsdmeadows

nsddata/bdata/meadows/

Results from the nsdmeadows experiment. A set of 100 images were chosen on the basis 

of their position in a semantic representational space. Participants performed three 

different behavioural tasks with these chosen stimuli. First, participants were asked to 

perform a multiple-arrangements task, arranging images according to their similarity with 

mouse drag and drop operations. Following this, participants performed additional 

arrangements along a valence scale, and along an arousal scale. 

The data is stored in a .json file. The json dictionary has a key for each subject, and in 

each subject's subdict, there are 11 tasks. The first task is the multiple arrangements task, 

and this is followed by five separate blocks for valence and five separate blocks for 

arousal.

Some example code in Python can be found as part of the nsdcode repository here:



https://github.com/kendrickkay/nsdcode/blob/master/examples/examples_meado

wsdata.py

nsdmemory

nsddata/bdata/nsdmemory/nsdmemory_subj??.[mat,tsv]

These contain the raw data for the nsdmemory experiment.

Post-scanning questionnaires

nsddata/bdata/postnsd/

Results from the questionnaire given to NSD subjects after completion of the NSD 

experiment and final memory test.

nsddata/bdata/postrestingstate/

Results from the questionnaire given to NSD subjects after completion of resting-state 

data collection.

https://github.com/kendrickkay/nsdcode/blob/master/examples/examples_meadowsdata.py


Spaces for imaging data
This section describes the spaces used in the prepared NSD data. Understanding this 

information is important for appropriate handling of the imaging data.

Spaces for the pre-processed data

Each subject has two functional data preparations: “func1mm” and “func1pt8mm”. This refers 

to either preparing the data at 1-mm spacing (i.e. upsampling the data) or at 1.8-mm spacing. 

The 1-mm data has additional fine-scale detail, but is very large in size (approximately 6 times 

larger than the 1.8-mm data). There is also a difference in temporal resolution in the pre-

processed data: the temporal sampling rate (TR) for the two preparations is 1 s and 1.333 s, 

respectively.

 

The two functional data preparations are in the same physical space. For example, the two 

preparations share a common first “corner” voxel (located at anterior, right, inferior) and the 

data from this voxel are identical across the two preparations. However, the two preparations 

have slightly different fields-of-view (since the voxel sizes do not evenly divide).

 

Each subject has three anatomical data preparations: “anat0pt5”, “anat0pt8”, “anat1pt0”. 

This refers to preparing the anatomical data (e.g. T1, T2) at 0.5-mm, 0.8-mm, and 1.0-mm 

resolution. All three versions share exactly the same field-of-view and are centered at exactly 

the same location in space.

 

The functional and anatomical data are not in register; rather, we have estimated a nonlinear 

warping for each subject that specifies how the functional data can be registered to the 

anatomical data (and vice versa). In some cases, we provide convenient versions of the data 

that have already been mapped (e.g. a version of the T1 that is warped and matched to the 

functional data).

 

There are three other spaces of note:

Some analysis results are prepared in FreeSurfer's surface space, and they are either 

contained within FreeSurfer directories (e.g. "label") or in directories named 

nativesurface.

Some analysis results are prepared in MNI space. This is achieved based on a nonlinear 

warp estimated for each subject that takes their 1.0-mm T1 and matches a 1-mm MNI 



template.

Some analysis results are prepared in FreeSurfer's fsaverage space. This is achieved 

based on the curvature-based alignment provided by FreeSurfer.

Note that for the diffusion data, the pre-processed volumes are matched to the anat0pt8 space 

(0.8-mm).

Basic handling of NSD data files

All NIFTI files in the prepared NSD data are in LPI ordering (the first voxel is Left, Posterior, 

and Inferior). In addition, all NIFTI files have their origin set to the exact center of the image 

slab, with one exception being NIFTI files in MNI space (for details, see Technical notes⁠ ).

We have pre-computed transformations that map between the various spaces, and these 

transformations are incorporated into the lightweight utility nsd_mapdata. This utility 

transforms user-supplied data from one space to another using interpolation (see Code⁠  for 

details).

https://slite.com/api/public/notes/h_T_2Djeid/redirect
https://slite.com/api/public/notes/60cYHMMmm3/redirect


Structural data
This covers anatomical data prepared for the NSD dataset (e.g. T1 and T2 volumes) as well as 

FreeSurfer outputs.

Anatomical files
 

nsddata/ppdata/subjAA/anat/aseg_RRRR.nii.gz

nsddata/ppdata/subjAA/func*/aseg.nii.gz

 

This is the aseg.mgz (anatomical segmentation) file that is created by FreeSurfer but 

transformed (using winner-take-all) to the official NSD anatomical spaces and functional 

spaces. See FreeSurfer’s FreeSurferColorLUT.txt file (a copy is in 

nsddata/templates/FreeSurferColorLUT.txt) for interpretation of what the integer values 

mean. This information allows you to select white matter, CSF, ventricles, subcortical 

regions, etc.

subj01/anat/aseg_0pt8.nii.gz

 

nsddata/ppdata/subjAA/anat/brainmask_RRRR.nii.gz

 

The binary brain mask that was used to mask the anatomical volumes (e.g. T1, T2) for de-

identification purposes. Note that this brain mask is intentionally liberal so as to not lose 

brain voxels.



subj01/anat/brainmask_0pt8.nii.gz

nsddata/ppdata/subjAA/anat/EPI_to_anat1pt0.nii.gz

nsddata/ppdata/subjAA/anat/EPI_to_MNI.nii.gz

 

A version of the mean EPI volume that has been warped to the 1.0-mm anatomical space 

for that subject, as well as a version that has been warped to MNI space.

subj01/anat/EPI_to_anat1pt0.nii.gz

nsddata/ppdata/subjAA/anat/hippoSfLabels_RRRR.nii.gz

nsddata/ppdata/subjAA/func*/hippoSfLabels.nii.gz

 

This is the automated FreeSurfer hippocampal segmentation that has been transformed 

(using winner-take-all) to the official NSD anatomical spaces and functional spaces. 



subj01/anat/hippoSfLabels_0pt8.nii.gz

 

nsddata/ppdata/subjAA/anat/surfaceimperfections_RRRR.nii.gz

nsddata/freesurfer/subjAA/label/[lh,rh].surfaceimperfections.mgz

This shows locations of errors in FreeSurfer cortical surface reconstructions, as 

determined by visual inspection. There are generally few errors, and these errors occur in 

stereotypical locations (see NSD data paper).

subj01/anat/surfaceimperfections_0pt8.nii.gz

nsddata/ppdata/subjAA/anat/[T1,T2,SWI,TOF]_RRRR_masked.nii.gz

 



The official T1, T2, SWI, and TOF volumes for a given subject. These volumes have been 

masked. The different resolutions of the volumes all share the exact same field-of-view and 

exact same center.

subj01/anat/T1_0pt8_masked.nii.gz

nsddata/ppdata/subjAA/anat/DWI_RRRR.nii.gz

Here, we took the pre-processed diffusion data, extracted the b0 volumes, averaged the 

b0 volumes within Run 1 and within Run 2, and then averaged the two averages together, 

producing a single volume (at 0.8-mm resolution). This volume was then resampled to 

different resolutions (in the same manner as the other anatomical volumes).

nsddata/ppdata/subjAA/anat/[T1,T2,SWI,TOF]_to_MNI.nii.gz

 

Versions of the volumes that have been warped to MNI space.



subj01/anat/T1_to_MNI.nii.gz

FreeSurfer files
 

nsddata/freesurfer/subjAA

 

This is the final FreeSurfer directory for subject AA, reflecting the result of manual edits to 

the tissue segmentation.

 

In running FreeSurfer, a 0.8-mm T1 volume was provided to FreeSurfer and the ‘-hires’ 

flag was used. Also, we have performed additional FreeSurfer-related processing, which 

created additional files. The changes include (1) creating layerB1, layerB2, and layerB3 

surfaces which correspond to 25%, 50%, and 75% of the distance from the pial surface to 

the white-matter surface; (2) creating semi-inflated surfaces (e.g. ?h.semiinflated + ?

h.sulcsemiinflated); and (3) creating flattened cortical surfaces (e.g. ?h.full.flat.patch.3d)). 

Also, note that the manually edited subject directory has modified files: for example, the 

brainmask.mgz file has had “holes” put into it (to aid in the surface reconstruction 

process).

Note that FreeSurfer has a built-in fsaverage flattened surface called 

[lh,rh].cortex.patch.flat. This is distinct from the flattened cortical surfaces described 

above. Note that the two flattened surfaces are rotated differently, so one may need to 

rotate the surfaces to a more canonical orientation for visualization purposes. Also, note 

that the full-cortex flattened surfaces remove substantial cortex near the midline (e.g. 

cingulate cortex), so be careful when interpreting results.



Besides the typical FreeSurfer outputs, the subject directories also contain a number of 

NSD-specific data files. These include ROI files and results from the prf, floc, and NSD 

experiments.

 

nsddata/freesurfer/fsaverage

 

The FreeSurfer special "fsaverage" subject. Again, additional files are present in this 

directory, reflecting additional FreeSurfer-related processing that we have performed.

 

nsddata/freesurfer/fsaverage[_sym,3,4,5,6]

 

These are standard FreeSurfer directories. No additional files are present in these 

directories.

 

nsddata_other/freesurferoriginals/subjAA_original

This is the original, non-edited FreeSurfer output for subject AA. Note that the surfaces in 

the edited and original versions are not compatible with one another, given that they have 

different numbers of vertices.

 

nsddata_other/freesurferoriginals/subjAA_repBB

 

This the raw FreeSurfer output produced when run on an individual T1 acquisition (the 

BBth one) for subject AA. (Please note that the individual T1 acquisitions processed here 

are after the co-registration procedure; hence, all of the results should be directly spatially 

comparable.) The call to FreeSurfer was the same as the original FreeSurfer call, except 

that the -hippocampal-subfields option was run with -T1 not -T1T2. Furthermore, no 

additional FreeSurfer-related processing was run for these directories.

 

These individual T1 FreeSurfer directories may be useful for assessing the reliability of 

FreeSurfer outputs for individual subjects. However, note that the final FreeSurfer directory 

(freesurfer/subjAA) reflects manual edits to the segmentation. Thus, a more appropriate 

comparison may be to use the freesurferoriginals/subjAA_original directory.



Functional data (general)
This covers general files that pertain to the preparation of the fMRI data.

 

nsddata/ppdata/subjAA/func1mm

 

This contains the high-resolution 1-mm preparation of the fMRI data.

 

nsddata/ppdata/subjAA/func1pt8mm

 

This contains the standard-resolution 1.8-mm preparation of the fMRI data.

 

nsddata/ppdata/subjAA/func*/brainmask.nii.gz

 

The binary brain mask that was used to mask the betas (in order to save disk space). Note 

that this brain mask is intentionally liberal so as to not lose brain voxels.

subj01/func1mm/brainmask.nii.gz

nsddata/ppdata/subjAA/func*/meanBBBB.nii.gz

nsddata/freesurfer/subjAA/label/[lh,rh].mean.mgz

 

This is the mean of all of the pre-processed volumes in BBBB for subject AA. BBBB can 

be '' (i.e. mean.nii.gz) which means averaged across all of the NSD core scan sessions; or 

'FIRST5' which means averaged across the first 5 NSD core scan sessions (this version 

was used in various co-registration procedures); or '_sessionNN' which means the Nth 

NSD core scan session; or '_prffloc' which means the prffloc scan session.



subj01/func1mm/mean.nii.gz

 

nsddata/ppdata/subjAA/func*/[T1,T2,SWI,TOF]_to_func*.nii.gz

 

This is a version of the subject’s anatomical volumes that has been matched to the 

functional data space.

subj01/func1mm/T1_to_func1mm.nii.gz

nsddata/ppdata/subjAA/func*/signaldropout.nii.gz

nsddata/ppdata/subjAA/func*/signaldropout_masked.nii.gz

nsddata/freesurfer/subjAA/label/[lh,rh].signaldropout.mgz

 

These are volumes that indicate areas of EPI signal dropout. They are computed by 

dividing the T2 (T2_to_func*.nii.gz) volume by the mean pre-processed EPI volume 

(mean.nii.gz) and then scaling the resulting volume such that 1 corresponds to a 

reasonable threshold that divides “good” EPI voxels from “bad” ones (see paper for 



details). The former volume (signaldropout.nii.gz) is not masked, whereas the latter volume 

(signaldropout.nii.gz) is masked according to the aseg.nii.gz file (any voxel that is zero in 

aseg is set to zero). The masked volume can be useful for ignoring voxels outside of the 

brain.

subj01/func1mm/signaldropout.nii.gz

nsddata/freesurfer/subjAA/label/[lh,rh].surfacevoxels*.mgz

Results of the ‘surface voxels’ visualization technique (Kay et al., NeuroImage, 2019). We 

sampled 1-, 2-, and 3-mm volumetric test patterns onto surface vertices using nearest-

neighbor interpolation.

subj05/label/lh.surfacevoxels_layerB3.mgz (3-

nsddata/ppdata/subjAA/func*/validBBBB.nii.gz

nsddata/freesurfer/subjAA/label/[lh,rh].valid.mgz

 

This is a binary mask indicating which voxels contain valid data in BBBB for subject AA. 

(Invalid data occurs when motion or spatial distortion cause missing data for voxels.) 



BBBB can be '' (i.e. valid.nii.gz) which means average of valid mask across all NSD core 

scan sessions; or '_sessionNN' which means the Nth NSD core scan session; or '_prffloc' 

which means the prffloc scan session.

 

In valid.nii.gz, the values consists of fractions between 0 and 1. For the most part, data 

were acquired for the entire brain in every session. However, there are a few sessions in 

which a small amount of brain was cut off. These cases can be detected by finding voxels 

in valid.nii.gz with values less than 1.0.

subj01/func1mm/valid.nii.gz (superimposed on 



Functional data (pRF, fLoc)
This covers analysis results for the pRF and fLoc experiments conducted in the initial 7T prffloc 

scan session.

Results from the prf experiment

The pre-processed fMRI time-series data from the prf experiment (6 runs, 300-s each) was fit 

with a pRF model using nonlinear optimization (the CSS model; see Kay et al., J Neurophys, 

2013). Note that the model was constrained to have non-negative gain.

The results of the fitting are provided in the following files. Note that in each of the files, NaN 

values are possible and indicate either missing data or voxels outside of the brain mask.

Both volume-based and surface-based versions of the results are available. Volume-based 

results are located at

nsddata/ppdata/subjAA/func*/prf_BBB.nii.gz

and surface-based results are located at

nsddata/freesurfer/subjAA/label/[lh,rh].prfBBB.mgz

where BBB refers to different quantities. To create surface-based versions, we take the 1-mm 

volume-based prf results and map them to the left and right hemisphere cortical surfaces 

(linear interpolation onto the 3 depth surfaces, average across depth).

Below, we document each of the BBB quantities.

angle

This contains, for each voxel, the polar angle of the pRF center. Values are between 0 and 

360 (Cartesian coordinate system where 0 corresponds to the right horizontal meridian, 90 

corresponds to the upper vertical meridian, etc.) and are in units of degrees. NaNs exist in 

the case that pRF eccentricity is exactly 0.



subj01/label/lh.prfangle.mgz

eccentricity

This contains, for each voxel, the eccentricity of the pRF center. Values are non-negative 

and are in units of degrees of visual angle. Values are capped at 1000.

subj01/label/lh.prfeccentricity.mgz

exponent

This contains, for each voxel, the fitted pRF exponent. Values are non-negative and are 

capped at 1000.

subj01/label/lh.prfexponent.mgz



gain

This contains, for each voxel, the gain of the pRF model. The interpretation is that this is 

the amplitude reached for a stimulus that completely covers the full extent of the pRF. 

Values are non-negative, in percent signal change, and are capped at 1000%.

subj01/label/lh.prfgain.mgz

meanvol

This contains, for each voxel, the mean EPI intensity (in the prf data). Values are in raw 

scanner units and generally fall in the range 0 to 4095.

subj01/label/lh.prfmeanvol.mgz

R2

This contains, for each voxel, the variance explained by the pRF model. Values generally 

lie between 0% and 100%, but other values are possible. Values are capped at the low 

end at -1000%.



subj01/label/lh.prfR2.mgz

 

size

This contains, for each voxel, the estimated pRF size. Values are non-negative and are in 

units of degrees of visual angle. The definition of pRF size is one standard deviation of a 

Gaussian that describes the response of the model to point stimuli. Note that this definition 

of pRF size takes into account the nonlinear summation behavior of the pRF model and is 

not the same as the “sigma” parameter used in the pRF model (see additional notes 

below). Values are capped at 1000 deg.

subj01/label/lh.prfsize.mgz

Technical notes on pRF size, sigma, and exponent
The stimulus apertures were prepared at 200 pixels x 200 pixels (corresponding to 8.4° x 

8.4° visual extent) and were subsequently used in the model fitting.

The underlying pRF model used to fit the data is given as follows:

1 modelfun = @(params,stim) ...

2 posrect(params(4)) * ...



3 (stim *

vflatten(makegaussian2d(200,params(1),params(2),abs(params(3)),a

bs(params(3))) / (2*pi*abs(params(3))^2))) .^

posrect(params(5));

4

In the above code, params(4) is the gain parameter, stim refers to the apertures 

(formatted as volumes x pixels*pixels), params(1) is the position of the pRF center 

expressed in terms of row indices (1-200 corresponds to the middle of the 1st row 

(top) to the middle of the 200  row (bottom)), params(2) is the position of the pRF 

center expressed in terms of column indices (1-200 corresponds to the middle of the 

1st column (left) to the middle of the 200  column (right)), params(3) is the standard 

deviation of the Gaussian (expressed in pixel units), and params(5) is the exponent 

parameter.

th

th

Note that the results written to the .nii.gz files are not the raw parameters mentioned 

above, but instead are the parameters that have been transformed to more meaningful 

units (e.g. degrees of visual angle).

Note that the prf_size.nii.gz file that is provided does not reflect the sigma parameter as 

used in the model code above, but rather sigma/sqrt(exponent). The motivation behind 

dividing sigma by sqrt(exponent) is to produce a measure of pRF size that takes into 

account the nonlinear behavior induced by the compressive power-law nonlinearity. 

Specifically, sigma/sqrt(exponent) is one standard deviation of a Gaussian that describes 

how the model would respond to a point-like stimulus that is moved around in the visual 

field.

Here is some example code that starts with the prf_XXX.nii.gz outputs that are provided 

with NSD and transforms these into a format that follows the model implementation:

1 prfangle = 15;    % degrees

2 prfecc = 2;       % degrees visual angle

3 prfexpt = 0.2;

4 prfsize = 4;      % degrees visual angle

5

6 sigma = prfsize*sqrt(expt);      % sigma parameter in degrees

visual angle

7 sigmapx = sigma * (200/8.4);     % sigma parameter in pixel

units

8 rindex = (1+200)/2 - (prfecc*sin(prfangle/180*pi) * (200/8.4));

% pRF y-position in row pixel units

9 cindex = (1+200)/2 + (prfecc*cos(prfangle/180*pi) * (200/8.4));

% pRF x-position in column pixel units



10 gau = makegaussian2d(200,rindex,cindex,sigmapx,sigmapx);  %

Gaussian image that peaks at 1. This Gaussian corresponds to the

Gaussian used in the modeling function (prior to the scale

normalization, dot-product with the stimulus, exponentiation,

and the gain).

For all the gory details, you can find the code that performed the pRF analysis in 

analysis_prf.m (provided in the nsddatapaper github repository).

Results from the floc experiment

The pre-processed fMRI time-series data from the floc experiment (6 runs, 312-s each) was 

analyzed using a GLM. The results are provided in the files detailed below. Note that in each of 

the files, NaN values are possible and indicate either missing data or voxels outside of the brain 

mask.

 

For convenience, we already compute various contrasts. Keep in mind that what we call 

"domains" is a higher hierarchical organizational scheme of the "categories". For example, the 

domain of 'faces' includes both the 'adult' and 'child' categories. We compute contrasts for each 

of the 5 domains (see nsddata/experiments/floc/domains.tsv), yielding values that quantify 

how large the response is to stimuli from a given domain compared to all other stimuli. We also 

compute contrasts for each of the 10 categories (see 

nsddata/experiments/floc/categories.tsv), yielding values that quantify how large the 

response is to stimuli from a given category compared to all other stimuli EXCLUDING stimuli 

in the category that is paired with the given category. For example, “facestval” contrasts 

responses to the domain of faces (adult and child faces aggregated) against responses to all 

other stimuli; “adulttval” contrasts responses to the category of adult faces against responses 

to all other stimuli excluding child faces; “childtval” contrasts responses to the category of child 

faces against responses to all other stimuli excluding adult faces.

 

Each contrast is expressed using two different metrics. “tval” is a conventional t-statistic that 

results from performing a two-sample t-test. “anglemetric” is a metric that, in contrast to “tval”, 

does not depend on the amount of data collected, and is simply the angle in the Cartesian 

coordinate plane made by the mean of the two groups being compared. For example, the point 

(A,B) plots the response to A along the x-axis and the response to B along the y-axis. Values 

for “anglemetric” range between -180 and 180 degrees and the zero point corresponds to the 

situation where A==B and A and B are positive. Thus, 0° indicates equal response to A and B; 

https://github.com/kendrickkay/nsddatapaper/
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/floc/domains.tsv
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/floc/categories.tsv


positive values going up to 180° proceed clockwise and indicate a preference for A; negative 

values going down to -180° proceed counterclockwise and indicate a preference for B.

Both volume-based and surface-based versions of the results are available. Volume-based 

results are located at

nsddata/ppdata/subjAA/func*/floc_BBB.nii.gz

and surface-based results are located at

nsddata/freesurfer/subjAA/label/[lh,rh].flocBBB.mgz

where BBB refers to different quantities. To create surface-based versions, we take the 1-mm 

volume-based floc results and map them to the left and right hemisphere cortical surfaces 

(linear interpolation onto the 3 depth surfaces, average across depth).

Below, we document each of the BBB quantities.

 

DDDtval

This contains, for each voxel, the t-value corresponding to contrasting domain DDD (or 

category DDD) against other stimuli.

subj02/label/lh.flocfacestv

DDDanglemetric

This contains, for each voxel, the angle metric corresponding to contrasting domain DDD 

(or category DDD) against other stimuli.



subj02/label/lh.flocfacesa

betas

This contains, for each voxel, 6 trials x 10 categories = 60 beta weights. The GLM 

incorporates six separate regressors for each category (coding distinct trials), producing 

six separate beta weights for each category. These distinct beta weights are used to 

compute the t-values and the angle metrics.

 

meanvol

This contains, for each voxel, the mean EPI intensity (in the floc data). Values are in raw 

scanner units and generally fall in the range 0 to 4095.



subj02/label/lh.flocmeanv

R2

This contains, for each voxel, the variance explained by the GLM model. Values generally 

lie between 0% and 100%, but other values are possible.

subj02/label/lh.flocR2.mgz



Functional data (NSD)
This covers GLM results for the NSD experiment. The goal of the main GLM analysis of the 

NSD data was to estimate single-trial betas (BOLD response amplitudes) for each voxel.

File format issues for betas

The files that contain NSD betas are very large. The units of the prepared betas are percent 

signal change. However, for some of ther NSD data files that we have prepared, the betas have 

been multiplied by 300 and converted to int16 format to reduce space usage. Upon loading the 

beta files, the values should be immediately converted back to percent signal change by 

casting to decimal format (e.g. single or double) and dividing by 300.

 

For volume-based format of the betas, two versions have been prepared:

NIFTI (.nii.gz). These data are in int16 format. A liberal brain mask has been applied such 

that non-brain voxels have been zeroed-out in order to save disk space. The .gz indicates 

that the files are compressed (to save disk space). The advantage of .nii.gz format is that it 

is standard and easy-to-use, but the disadvantage is that the files must be uncompressed 

when loading and must be completely loaded into memory.

HDF5 (.hdf5). These data are in int16 format. '/betas' is X voxels x Y voxels x Z voxels x 

750 trials. A liberal brain mask has been applied such that non-brain voxels have been 

zeroed-out. This file is in HDF5 format (with a specific chunk size of [1 1 1 750]) in order to 

enable very fast random access to small parts of the data file. A disadvantage of this 

format is that the file is uncompressed and therefore large in size.

 

Here is an example of how to use MATLAB to quickly load all 750 single-trial betas 

associated with 5 voxels from a single scan session, using h5read.m.

data = h5read('betas_session01.hdf5','/betas',[10 10 10 1],[1 1 5 

750]);

Note that these are 1-indexed (due to MATLAB’s convention), and hence we are loading 

the 10th, 11th, 12th, 13th, and 14th voxels along the third dimension.

Results of a simple ON-OFF GLM



Besides the single-trial GLM, the NSD were also analyzed with a simple ON-OFF GLM in order 

to derive some useful quantities.

nsddata/ppdata/subjAA/func*/onoffbeta_sessionBB.nii.gz

This is the beta (in percent signal change units) obtained, for session BB, for a simple 

GLM model that describes experiment-related variance with a simple ON-OFF predictor 

(one condition, canonical HRF).

subj01/func1mm/onoffbeta_session10.nii.gz

nsddata/ppdata/subjAA/func*/onoffbeta.nii.gz

This is the average (using nanmean.m) of the onoffbeta across all sessions.

 

nsddata/ppdata/subjAA/func*/R2_sessionBB.nii.gz

This is the voxel-wise variance explained (0-100) for the simple ON-OFF GLM model for 

session BB.



subj01/func1mm/R2_session10.nii.gz

nsddata/ppdata/subjAA/func*/R2.nii.gz

nsddata/freesurfer/subjAA/label/[lh,rh].R2.mgz

This is the voxel-wise variance explained, averaged across all sessions (using 

nanmean.m).

Results of single-trial GLM

For single-trial GLM, we analyzed the time-series data from the NSD experiment using 3 

different GLM models. The identifiers for these models are:

betas_assumehrf (beta version 1; b1) - GLM in which a canonical HRF is used

betas_fithrf (beta version 2; b2) - GLM in which the HRF is estimated for each voxel

betas_fithrf_GLMdenoise_RR (beta version 3; b3) – GLM in which the HRF is 

estimated for each voxel, the GLMdenoise technique is used for denoising, and ridge 

regression is used to better estimate the single-trial betas.

The interpretation of the betas obtained from these GLMs is that they are the BOLD response 

amplitudes evoked by each stimulus trial relative to the baseline signal level present during the 

absence of a stimulus (“gray screen”). Note that betas are expressed in percent signal change 

by dividing the full set of amplitudes obtained for a voxel by the grand mean intensity observed 

for that voxel in a given scan session and then multiplying by 100. 

 

Betas are provided both in the subject-native volume spaces (func1mm and func1pt8mm), a 

subject-native surface space (nativesurface) as well as in group spaces (fsaverage and MNI). 



Details on the nativesurface and group spaces are provided later.

 

Note that to save disk space, the ‘betas_assumehrf’ version is provided for the func1pt8mm 

space but not for the func1mm space.

 

nsddata_betas/ppdata/subjAA/func*/betas_*/betas_sessionBB.[nii.gz,hdf5]

 

These are single-trial betas (that have been multiplied by 300 and converted to integer 

format). The betas are in chronological order. There are 750 betas since there are 750 

stimulus trials in each scan session (after concatenating all 12 runs). The betas 

correspond to the data acquired in session BB for subject AA.

 

nsddata_betas/ppdata/subjAA/func*/betas_*/meanbeta.nii.gz

nsddata_betas/ppdata/subjAA/func*/betas_*/meanbeta_sessionBB.nii.gz

 

For each session, the mean of all single-trial betas is calculated (meanbeta_sessionBB); 

then, this mean is averaged across all scan sessions (meanbeta). The result is a volume 

that indicates the voxel-wise average single-trial beta obtained for subject AA. (Please 

note that although the file format is single, the values must still be divided by 300 in order 

to return to percent signal change units.)

subj05/func1mm/betas_fithrf/meanbeta.nii.gz

nsddata_betas/ppdata/subjAA/func*/betas_*/R2.nii.gz

nsddata_betas/ppdata/subjAA/func*/betas_*/R2_sessionBB.nii.gz

 



This contains the variance explained by the GLM model in each session (R2_sessionBB), 

and the average of this quantity across all sessions (R2). Please note that the R2 values 

for the ‘betas_assumehrf’ and ‘betas_fithrf’ models are probably not very useful given that 

these models are very flexible and can essentially fit nearly all of the variance in a given 

time-series (even if the time-series has no reliable stimulus-evoked responses). In 

contrast, the R2 for the ‘betas_fithrf_GLMdenoise_RR’ may be useful given that the ridge-

regression regularization does shrink the model according to the response reliability that 

appears to be in the data for each given voxel. NaNs are possible in R2_sessionBB.nii.gz 

for invalid voxels. For R2.nii.gz, we compute the mean using nanmean.

subj05/func1mm/betas_fithrf_GLMdenoise_RR/R2.nii.gz

nsddata_betas/ppdata/subjAA/func*/betas_*/R2run_sessionBB.nii.gz

 

This contains the variance explained by the GLM model calculated separately for each run 

in a given session.

 

nsddata_betas/ppdata/subjAA/func*/betas_*/HRFindex_sessionBB.nii.gz

nsddata_betas/ppdata/subjAA/func*/betas_*/HRFindexrun_sessionBB.nii.gz

 

Index of the chosen HRF for each voxel (integer between 1 and 20). This is estimated for 

each run in a session (HRFindexrun_sessionBB). The final HRF used to analyze the entire 

session of data is determined by combining results across runs (HRFindex_sessionBB).



subj05/func1mm/betas_fithrf_GLMdenoise_RR/HRFindex_se

nsddata_betas/ppdata/subjAA/func*/betas_*/FRACvalue_sessionBB.nii.gz

 

The fractional regularization level chosen for each voxel. Note that invalid voxels (e.g. 

outside of brain) are given a fraction of 1.

subj05/func1mm/betas_fithrf_GLMdenoise_RR/FRACvalue

Single-trial GLM results in nativesurface format
 



nsddata_betas/ppdata/subjAA/nativesurface/betas_*/[lh,rh].betas_sessionBB.hdf5

 

These files contain betas in the native FreeSurfer surface space for a given subject. They 

are saved in .hdf5 format to allow for very rapid access to subsets of the available vertices.

 

To generate these betas, we take the 1-mm subject-native volume betas, resample via 

cubic interpolation onto the subject-native cortical surfaces (which exist at 3 different 

depths), and average the resulting betas across depths. The resulting matrices have 

dimensions vertices x trials (and are separated by hemisphere).

 

Note that the betas are saved in int16 format and are multiplied by 300. In the case of 

missing data in a given scan session (i.e., due to head motion, a spatial location is moved 

out of the imaging field-of-view), it is possible that vertices have their betas set to all zeros. 

(There are very few instances where data are missing for cortical surface vertices; see 

nsddata/information/knowndataproblems.txt for more information. To detect such 

cases, one can simply check in each scan session whether all betas for a given vertex are 

equal to 0.) The ‘ChunkSize’ for the .hdf5 files is [1 T] where T is the total number of trials; 

this makes loading of all of the trials for single vertex (or small group of vertices) very fast.

 

Here is an example of how to use MATLAB to quickly load all 750 single-trial betas 

associated with the first 100 vertices from a single scan session.

 

data = h5read(‘lh.betas_session01.hdf5','/betas',[1 1],[100 750]);

 

Note that the indices in MATLAB are 1-based.

Single-trial GLM results in group spaces 
(fsaverage, MNI)
 

The primary advantage of the subject-native spaces is that they provide the highest-resolution 

version of the NSD data. However, group analyses may be of interest, and one may want to 

transform the NSD data to group spaces prior to analysis. (Note that in theory, one can perform 

analyses of subject-native data and then transform to group spaces at the very end of the 

analysis process; this will likely give similar but not identical results.)

 

The group space versions of the betas are obtained by taking the betas in the subject-native 1-

mm volume space and then resampling the betas to the group spaces (more details on the 

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/information/knowndataproblems.txt


resampling procedures for fsaverage and MNI is provided below). Thus, there is some 

additional interpolation (and loss of resolution) inherent in the group-space betas.

 

nsddata_betas/ppdata/subjAA/fsaverage/betas_*/[lh,rh].betas_sessionBB.mgh

 

These files contain betas in the FreeSurfer fsaverage space. To generate these betas, we 

start with the subject-native surface format (i.e. take the 1-mm subject-native volume 

betas, resample via cubic interpolation onto the subject-native cortical surfaces (which 

exist at 3 different depths), average the resulting betas across depths), but then we 

additionally map via nearest-neighbor interpolation to the fsaverage surface. Note that the 

betas are saved in decimal format and are in percent signal change units (i.e. they are not 

multiplied by 300). In the case of missing data, it is possible that betas will have NaNs. 

Here is a simple example: 

a1 = load_mgh('lh.betas_session04.mgh');

>> size(a1)

ans =

      163842           1           1         750

 

nsddata_betas/ppdata/subjAA/MNI/betas_fithrf/betas_sessionBB.nii.gz

 

These files contain betas in MNI space. To generate these betas, we take the 1-mm 

subject-native volume betas and resample them via cubic interpolation into MNI space. 

Note that values are in int16 format and are multiplied by 300. Note that voxels with invalid 

data for a given scan session (either because data was missing from the subject-native 

volume or because the location is outside of the subject-native brain mask) will have their 

betas set to all zeros. Finally, note that to save disk space, we provide only the 

‘betas_fithrf’ version of the betas in MNI space (we do not include ‘betas_assumehrf’ nor 

‘betas_fithrf_GLMdenoise_RR’).

 

nsddata_betas/ppdata/subjAA/MNI/betas_fithrf/valid_sessionBB.nii.gz

 

These files correspond to betas_sessionBB.nii.gz and indicate which voxels contain valid 

data for each given scan session.

Noise ceiling
 



Noise ceiling estimates have been computed based on the trial-to-trial reliability of the beta 

weights. In essence, the more repeatable the response across repeated presentations of an 

image, the more variance in the response can be attributed to a stimulus-related signal. These 

noise ceiling estimates are useful for putting an upper bound on the amount of variance that 

can be explained/predicted in a given voxel’s (or vertex’s) beta weights. Formal description of 

the statistical theory behind the noise ceiling calculation can be found in the NSD data paper.

 

nsddata_betas/ppdata/subjAA/func*/betas_*/ncsnr.nii.gz

nsddata_betas/ppdata/subjAA/fsaverage/betas_*/[lh,rh].ncsnr.mgh

nsddata_betas/ppdata/subjAA/nativesurface/betas_*/[lh,rh].ncsnr.mgh

These files provide the noise ceiling signal-to-noise ratio (ncsnr) for each voxel (or vertex). 

These ncsnr values are computed on basis of all of the beta weights obtained in all NSD 

scan sessions. Values are generally between 0 and 0.6 but can go higher (a subset of 

voxels/vertices will be exactly 0, and this is expected behavior given the nature of the 

procedure). Invalid voxels (e.g. outside the brain) are given a value of NaN. The ncsnr can 

be easily converted into noise ceilings (see below). The "ncsnr_split1" and "ncsnr_split2" 

files reflect calculations of the ncsnr value from two independent splits of the images 

available for each given subject.

subj05/func1mm/betas_fithrf_GLMdenoise_R

Conversion of ncsnr to noise ceiling percentages

In the NSD data paper, we explain that the noise ceiling (NC) can be expressed as:

where sigma_signal is the standard deviation of the signal and sigma_noise is the standard 

deviation of the noise. But how can this be computed based on knowledge of the noise ceiling 

signal-to-noise ratio (ncsnr)? Before deriving that result, consider the fact that the user may 



wish to average together responses across several trials conducted for each image. By 

averaging, the user is effectively reducing the variance of the noise. Since we are assuming 

that the noise is Gaussian-distributed, the effective noise variance becomes:

where n is the number of trials that are averaged together. We can now re-write the noise 

ceiling as:

Dividing the numerator and denominator by sigma_noise , we obtain2

which further reduces to

This shows how the noise ceiling for a given voxel can be computed from its ncsnr value.

One complication is that one might be using a preparation of the data in which different images 

have different numbers of trials that are averaged together. To flexibly deal with any potential 

scenario, we can use a weighted average to pool variance estimates across different images 

and re-write the noise ceiling equation as:

where A is the number of data points that reflect 3 trials, B is the number of data points that 

reflect 2 trials, and C is the number of data points that reflect 1 trial. With some algebra, we can 

then re-write the noise ceiling equation as follows:

Notice that this equation is simply a more general version of the earlier noise ceiling equation.

Technical notes



The b3 betas are appropriate only for brain regions where there is some expectation that 

the BOLD response will be consistent across the repetitions of a given image. This is 

because the regularization level is based on cross-validation of responses to image 

repetitions.

Ridge regression tends to shrink betas and therefore induces bias for percent signal 

change to be closer to 0. We apply a post-hoc scale and offset to the b3 betas to 

approximately match what is observed for unregularized betas (see NSD data paper for 

details). If absolute units of percent signal change are of specific interest, the betas_fithrf 

(b2) preparation is more straightforward to interpret and is therefore recommended for use 

instead.

If one seeks to perform connectivity-based analyses that look for correlations in betas 

across voxels (or regions), there may be large differences in results comparing b1 and b2 

against b3. The general expectation is that the GLMdenoise procedure (which is 

incorporated as part of b3) will tend to remove global signal correlations that may exist in 

the fMRI data. 

In the ncsnr values that are provided, there are occasionally high values outside the brain; 

this is likely an artifact due to an interaction between the fact that imaging artifacts tend to 

have low temporal frequencies and the specific temporal distribution of repeated trials in 

the NSD experiment.



Functional data (resting-
state)
Most users will likely want to start with the pre-processed time-series data for the resting-state 

data (see Time-series data⁠ ). However, as described in the NSD data paper, we have used 

a GLM to analyze the resting-state data, and the results may be of interest to some users. To 

obtain betas, we simply analyzed the resting-state data as if they were data acquired for the 

first NSD run and last NSD run in each given scan session.

Results of single-trial GLM
 

nsddata_betas/ppdata/subjAA/*/restingbetas_fithrf/

 

This contains results of the GLM analysis of the resting-state runs. Note that only the 

‘_fithrf’ GLM version of the betas are provided. The format is the same as for the NSD 

runs.

https://slite.com/api/public/notes/vjWTghPTb3/redirect


Diffusion data
This section covers the measurements and pre-processing of diffusion-weighted magnetic 

resonance imaging data (dMRI) prepared for the NSD dataset. 

Data were preprocessed using publicly available processing pipelines available on brainlife.io. 

Preprocessing pipelines were used to remove artifacts as well as possible; see note at the end. 

After artifact removal/minimization, a series of additional brainlife.io pipelines were used to 

generate and share data derivatives, including minimally preprocessed dMRI data, 

tractography, and network outputs.

Diffusion (dMRI) data collection

The four diffusion-weighted acquisitions were combined into two runs of diffusion data (referred 

to as ‘run_1’, ‘run_2’). The two diffusion runs were combined (stacked in the 4th dimension) 

before being processed. Data preprocessing included susceptibility-weighted, motion, and 

eddy correction. 

Cloud processing via brainlife.io

All processing was performed on the reproducible, open cloud-based service known as 

brainlife.io. Brainlife.io orchestrates large-data storage, processing via open-service code 

applications (apps), and high-speed large computing resources to quickly and reproducibly 

process neuroimaging data. 

All of the code and pipelines used for processing the data described below can be found on 

brainlife.io and from there on GitHub.com. A table at the end of this document provides all 

references to the pipeline used for data processing and generation.

The output files generated are further described below.

Diffusion-weighted imaging (dMRI). 

The preprocessed dMRI data were used as the basis for all further modeling and analyses. 

This includes NIFTI images and the corrected b-values (bvals) and b-vectors (bvecs) in FSL 

format. These NIFTIs are in alignment with and have the same slice dimensions and voxel size 

as the official 0.8-mm T1w images provided with NSD (see ). All NIFTI-based 

volume derivatives from the dMRI data maintain the same properties in regards to slice and 

voxel sizes. (Note that in our preprocessing, we drop the very last acquired volume; hence 

there is a one-volume mismatch between the number of volumes in the raw data (99, 99, 100, 

⁠⁠Untitled⁠

http://brainlife.io/
http://brainlife.io/
http://brainlife.io/
http://brainlife.io/
http://brainlife.io/
http://brainlife.io/
http://github.com/
https://slite.com/api/public/notes/5jIyL2i7YB/redirect


100 for the four raw diffusion acquisitions) and the number of volumes in the preprocessed data 

(98 for 'Run 1' (which combines the first two acquisitions) and 99 for 'Run 2' (which combines 

the second two acquisitions).)

nsddata_diffusion/ppdata/subjAA/run_*/dwi.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dwi.bvecs  

nsddata_diffusion/ppdata/subjAA/run_*/dwi.bvals  

subj07/run_1/dwi/dwi.nii.gz

Signal-to-noise ratio (SNR) quantification. 

Following preprocessing and separation of the dMRI data into its component runs, the signal-

to-noise ratio (SNR) was computed using a brainlife.io App implementing methods available 

on the scientific library DIPy.org. The output of this process is a .csv file describing the SNR 

found across the x-, y-, or z-directions in diffusion-weighted volumes and the SNR across the 

non-diffusion weighted volumes:

nsddata_diffusion/ppdata/subjAA/run_*/snr/snr.csv  

dMRI brain mask. 

A brain mask was generated with an App implementing FSL BET and used for all dMRI 

signal modeling and analyses purposes. The brain mask was generated using the 

preprocessed and combined dMRI data following preprocessing. The same mask was used for 

all subsequent processing steps:

nsddata_diffusion/ppdata/subjAA/brainmask/mask.nii.gz  

https://doi.org/10.25663/brainlife.app.120
http://dipy.org/
https://doi.org/10.25663/brainlife.app.163


subj07/brainmask/mask.nii.gz

Visual area parcellation. 

A parcellation of the visual areas was implemented using the 180 multi-modal cortical Atlas 

(Glasser et al, 2016). The Atlas and areas were imported into dMRI volume space. The areas 

were used to segment the optic radiation and to generate area-to-area connectivity matrices. A 

key.txt   file is provided also. The file includes the assignment of the voxels into the NIFTI files 

to the indices of the areas in the parcellation. A label.json   file is also provided to includes 

important information for the parcellation nifti.

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-

parcellation/parcellation.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-parcellation/key.txt  

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-parcellation/label.json  

subj07/run_1/visual-area-parcellation/parc.nii.gz

Diffusion signal modeling and data derivatives



The Diffusion-Tensor Model (DTI; Le Bihan et al., Journal of Magnetic Resonance Imaging, 

2001), Diffusion Kurtosis Imaging (DKI; Rosenkrantz et al. Journal of Magnetic Resonance 

Imaging, 2015), and Neurite Orientation Dispersion Diffusion Imaging (NODDI; Zhang et al. 

Neuroimaging 2012) models were fit to the dMRI data.

Diffusion Tensor Imaging (DTI). 

The fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity maps from the 

DTI model were generated using methods implementing in MRTrix3 (JD Tournier et al. 

Neuroimage 2019) as implemented in a brainlife.io App.

nsddata_diffusion/ppdata/subjAA/run_*/dti/ad.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dti/fa.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dti/md.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dti/rd.nii.gz  

Additional parameters were also returned byMRTrix3 given the multi-shell nature of the data.

nsddata_diffusion/ppdata/subjAA/run_*/dti/cs.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dti/cl.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dti/cp.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dti/kurtosis.nii.gz  

subj07/run_1/dti/fa.nii.gz

Diffusion Kurtosis Imaging (DKI). 

The implementation of DKI provided by the library DIPy.org was used via a brainlife.io App to 

generate DKI model parameter estimates. Both DTI measures (fractional anisotropy, mean 

diffusivity, axial diffusivity, radial diffusivity), as well as proper DKI measures (axial kurtosis, 

geodesic anisotropy, mean kurtosis, radial kurtosis), maps were generated. 

https://doi.org/10.25663/brainlife.app.297
http://dipy.org/
https://doi.org/10.25663/bl.app.9


nsddata_diffusion/ppdata/subjAA/run_*/dki/ad.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dki/fa.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dki/md.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dki/rd.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dki/ak.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dki/ga.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dki/mk.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dki/rk.nii.gz  

subj07/run_1/dki/mk.nii.gz

Neurite Orientation Dispersion Density Imaging (NODDI). 

The NODDI implementation available in the library AMICO was used via a brainlife.io App to 

generate all parameter estimates. The neurite density, orientation dispersion, and isotropic 

volume fraction maps were generated. Two fits of the NODDI model were applied per dMRI 

run. The parallel diffusivity parameter (d//) was changed by run/fit. 

The first model fitting was performed with d// = 1.7 x 10 mm /s, which is designed for fitting 

in deep white matter. In the data, this is marked as noddi-wm directory. 

-3 2

The second model fitting was performed with d// = 1.7 x 10 mm /s which was found to be 

the optimal value for gray matter mapping as identified in Fukutomi et al, 2018. This is 

designated with a noddi-cortex directory. The files within each directory have the same name, 

and thus we describe one set of directories below.

-3 2

nsddata_diffusion/ppdata/subjAA/run_*/noddi-{}/ndi.nii.gz   

# neurite density index map for either the white matter (wm) or cortex fits

https://doi.org/10.25663/brainlife.app.365


nsddata_diffusion/ppdata/subjAA/run_*/noddi-{}/odi.nii.gz   

# orientation dispersion index map for either the white matter (wm) or cortex fits

nsddata_diffusion/ppdata/subjAA/run_*/noddi-{}/isovf.nii.gz   

# isotropic volume fraction map for either the white matter (wm) or cortex fits

subj07/run_1/noddi-wm/odi.nii.gz

Constrained Spherical Deconvolution (CSD). 

CSD model fits for diffusion tractography across multiple spherical harmonic orders (L =2, 4, 

6, and 8) using MRTrix3.

max

nsddata_diffusion/ppdata/subjAA/run_*/csd/lmax2.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/csd/lmax4.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/csd/lmax6.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/csd/lmax8.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/csd/response.txt  



subj07/run_1/csd/lmax8.nii.gz



subj07/run_1/csd/response.txt

Tractography. 

Whole-brain diffusion tractography was performed using a brainlife.io App implementing an 

advanced version of MRTrix3’s anatomically-constrained tractography (ACT) methodology 

(McPherson and Pestilli, Communications Biology, 2021). The multi-shell constrained spherical 

deconvolution (CSD) model was used to identify fiber orientation distributions. Multiple CSD 

model orders (L ) were run, namely 6 and 8, and used to separately generate tractograms. 

Each tractogram was generated with 1.5 million streamlines. The two tractograms were 

merged into a single tractogram containing 3 million streamlines implementing a simplified 

version of Ensemble Tractography (Takemura et al., PloS Computational Biology, 2018). 

max

https://doi.org/10.25663/brainlife.app.297
https://doi.org/10.25663/brainlife.app.305


subj07/run_1/track/track-merged.nii.gz

The optic radiations were identified using a novel brainlife.io App (L 8) using parallel 

transport tractography implemented in the software library Trekker (Aydogan et al., IEE TMI, 

2021). To identify the termination of the Optic Radiation, the LGN as identified with Freesurfer 

and V1 as identified by the multimodal parcellation were used. 5,000 streamlines were 

generated for each hemispheric and optic radiation. Left and right Optic Radiations were then 

merged to generate a single tractogram containing 10,000 streamlines.

max 

nsddata_diffusion/ppdata/subjAA/run_*/track/track-lmax6.tck  

nsddata_diffusion/ppdata/subjAA/run_*/track/track-lmax8.tck  

nsddata_diffusion/ppdata/subjAA/run_*/track/track-merged.tck  

nsddata_diffusion/ppdata/subjAA/run_*/track/track-optic-radiation.tck  

https://doi.org/10.25663/brainlife.app.226


Major white matter tracts segmentation. 

The 61 major white matter tracts were segmented using the 3,000,000 whole-brain 

tractograms. The segmentation was performed using a brainlife.io App implementing an 

improved version of rules provided by the White Matter Query Language (WMQL; Wassermann 

et al., Brain Structure and Function, 2016). The segmentation outputs are organized into 

MatLab files (.mat) containing two cell structures: 

White Matter Tract Name: the name of each white matter tract (1 x 61 tracts), 1.

White matter Tract-streamline Index: the integer index of each tract for every streamline in 

the whole-brain, merged, tractogram (1 x 3,000,000 streamlines). 

2.

Following the tracts segmentation, a brainlife.io App was used to remove outlier streamlines 

from each tract. Outliers streamlines were defined as those with at least one node x,y,z 

coordinates more than 3 standard deviations away from the median white matter tract trajectory 

(i.e., median x,y,z tract coordinates). The resulting outliers' removed white matter tracts 

classification structure was returned ( classification-cleaned.mat ). Finally, a classification 

structure was generated for the optic radiation tractogram ( classification-optic-

radiation.mat ), along with a version with outliers removed ( classification-optic-

radiation-cleaned.mat ).

Note that poor segmentations of the cinguli were returned in both the classification-

wholebrain and classification-wholebrain-cleaned.mat  files for subj02, 

subj03, subj07, and subj08.

nsddata_diffusion/ppdata/subjAA/run_*/tract-segmentation/classification-

wholebrain.mat  

nsddata_diffusion/ppdata/subjAA/run_*/tract-segmentation/classification-

wholebrain-cleaned.mat  

nsddata_diffusion/ppdata/subjAA/run_*/tract-segmentation/classification-

optic-radiation.mat  

nsddata_diffusion/ppdata/subjAA/run_*/tract-segmentation/classification-

optic-radiation-cleaned.mat  

https://doi.org/10.25663/brainlife.app.188
https://doi.org/10.25663/brainlife.app.195


subj07/run_1/tract-segmentation/classification-optic-radiation-clean.mat

Tract Profiles and macrostructural statistics. 

Mapping of DTI, DKI, and NODDI metrics along the core of the segmented whole-brain white 

matter tracts and the optic radiation using Tract Profiles (Yeatman et al, 2012), and quantitative 

statistics of macrostructure including tract volume, length, and streamline count provided in a 

single .csv file following format of AFQ-Browser (Yeatman/Rokem). As brainlife.io treats DTI 

and DKI as the same datatypes (with differentiating datatype tags), profilometry was performed 

separately on DTI and DKI measures, but NODDI values were computed in both. These two 

are designated with a specific directory, specifically tract-statistics/dti and tract-statistics/dki. 

Within each directory includes the profiles for the whole-brain segmentation following 

streamline outlier removal and the optic radiation segmentation following streamline outlier 

removal.

nsddata_diffusion/ppdata/subjAA/run_*/tract-statistics/*/tractmeasures-

wholebrain.csv  # whole-brain segmentation statistics derived from either DTI or DKI models 

and NODDI

nsddata_diffusion/ppdata/subjAA/run_*/tract-statistics/*/tractmeasures-

optic-radation.csv  # optic radiation segmentation statistics derived from either DTI or DKI 

models and NODDI

Visual area networks. 

http://brainlife.io/


The merged 3,000,000 whole-brain tractogram was used in combination with the visual areas 

defined by the multi-modal cortical atlas to build a connectivity matrix of the visual system using 

a brainlife.io App implementing MRTrix3's method to build networks. 

Multiple network measures were generated. Both standard network measures such as fiber 

count, density, and length as well as more advanced measures derived from the DTI, DKI, and 

NODDI model were generated. 

Note that the DTI and DKI matrices have been seperated into distinct directories (i.e. 

visual-area-networks/dti and visual-area-networks/dki). Both directories contain the 

NODDI matrices generated during the generation of the DTI and DKI matrices. The 

same networks were then normalized by density. A final network of density 

normalized by length was also computed. The streamline weights defined by SIFT2 

and node assignments are also provided.

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-networks/*/density.csv  

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-networks/*/length.csv  

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-networks/*/count.csv  

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-networks/*/{}_mean.csv   # 

DTI, DKI, NODDI measures

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-

networks/*/{}_mean_density.csv   # DTI, DKI, NODDI measures normalized by density

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-networks/*/weights.csv  

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-

networks/*/assignments.csv  

Measures of cortical white matter properties. 

Diffusion measures derived from DTI, DKI, and NODDI models were mapped to the 

‘midthickness’ surface derived from FreeSurfer following procedures outlined in Fukutomi et al, 

2018. Each diffusion model mapping is designated by a cortexmap-{}  directory. Within each 

model directory contains a main directory titled cortexmap. Within this directory are three sub-

directories containing various surface gifti (gii) files: func, label, surf . 

Func contains the diffusion measures for each model mapped to the cortical midthickness 

surface, including temporal signal-to-noise ratio (tSNR). 

Label contains the Desikan-Killiany (aparc.a2009s) atlas converted to GIFTI. 

Surf contains all of the surfaces generated during the procedures, including (but not limited 

to) the midthickness surface and inflated versions of the midthickness surface. The 

remaining surfaces are surfaces derived from Freesurfer converted to gifti that were 

https://doi.org/10.25663/brainlife.app.394


necessary for generating the midthickness surface and for mapping the diffusion model 

data to the midthickness surface. 

Note, the func.gii metric surface files, and the GIFTI derivatives, may not load 

well into FreeSurfer but will load into Connectome Workbench. To ease the burden on 

users who are more accustomed to FreeSurfer's outputs, .mgh versions of the metric 

files are also provided. The GIFTI versions of the pial, white, and .label files are 

simple conversions of the FreeSurfer outputs using mris_convert. The midthickness 

surface GIFTI surface, to which the dMRI measures of microstructure were mapped, 

is nearly identical, although derived slightly differently, to the LayerB2 files described 

in .  However, this only matters if a user wants to replicate the cortex 

mapping analysis, as the number of vertices between the *func.gii files and the 

Freesurfer surfaces are the same.

⁠⁠Untitled⁠

nsddata_diffusion/ppdata/subjAA/run_*/cortexmap/func/*/*h.{}.func.gii   or 

*.mgh   # hemispheric diffusion measure mapped to midthickness surface in gifti and 

Freesurfer datatypes

nsddata_diffusion/ppdata/subjAA/run_*/cortexmap/label/*h.aparc.a2009s.nativ

e.label.gii   # hemispheric Desikan-Killiany (aparc.a2009s) atlas in gifti

nsddata_diffusion/ppdata/subjAA/run_*/cortexmap/surf/*h.midthickness.native

.surf.gii  # hemispheric midthickness surface in gifti

nsddata_diffusion/ppdata/subjAA/run_*/cortexmap/surf/*h.midthickness.inflat

ed.surf.gii  

# hemispheric inflated midthickness surface in gifti

nsddata_diffusion/ppdata/subjAA/run_*/cortexmap/surf/*h.midthickness.very_i

nflated.surf.gii   # hemispheric inflated midthickness surface in gifti

https://slite.com/api/public/notes/5jIyL2i7YB/redirect


subj07/run_1/cortexmap (FA mapped)

Statistics of cortical midthickness mapped diffusion measures. 

Mapping of DTI, DKI, and NODDI metrics to the cortical mid thickness surface within both the 

Desikan-Killiany (aparc.a2009s) and 180 multi-modal cortical node atlases outputted to .csv 

files is compatible with the format proposed by AFQ-Browser (Yeatman et al., Nature 

Communications 2017). As brainlife.io treats DTI and DKI as the same datatypes (with 

http://brainlife.io/


differentiating datatype tags), profilometry was performed separately on DTI and DKI 

measures, but NODDI values were computed in both. These two are designated with a specific 

directory, specifically cortexmap-statistics/func/dti  and cortexmap-

statistics/func/dki.  Within each directory includes the number of non-zero vertices 

(COUNT_NONZERO), minimum (MIN), maximum (MAX), average (MEAN), median 

(MEDIAN), mode (MODE), and standard deviation (STDEV) of each diffusion-based measure 

within each parcel found in the Desikan-Killiany (aparc.a2009s; aparc) and 180 multi-modal 

cortical node (hcp-mmp; parc) atlases.

nsddata_diffusion/ppdata/subjAA/run_*/cortexmap-statistics/*/aparc_{}.csv   # 

summary statistic for each DTI or DKI, and every NODDI, measure in every parcel in the 

aparc.a2009s atlas

nsddata_diffusion/ppdata/subjAA/run_*/cortexmap-statistics/*/parc_{}.csv   # 

summary statistic for each each DTI or DKI, and every NODDI, measure in every parcel in the 

aparc.a2009s atlas

Colormap for visual-area parcellation

Below is a table of the ROI parcellations and colormap used to generate the visual area 

networks and images found in the NSD data paper. Note these are not the exact colors as the 

colors from the HCP_MMP parcellation.

HCP-MMP Parcel Color (HEX) HCP-MMP Parcel Color (HEX)

lh.v1 #000000 rh.v1 #1CE6FF

lh.vmv1 #FFFF00 rh.vmv1 #FF34FF

lh.mst #FF4A46 rh.mst #008941

lh.v6 #006FA6 rh.v6 #A30059

lh.v2 #FFDBE5 rh.v2 #0000A6

lh.vmv2 #7A4900 rh.vmv2 #63FFAC

lh.v3 #B79762 rh.v3 #8FB0FF

lh.vmv3 #004D43 rh.vmv3 #997D87

lh.v4 #5A0007 rh.v4 #809693

lh.v8 #FEFFE6 rh.v8 #1B4400



lh.fef #4FC601 rh.fef #3B5DFF

lh.pef #4A3B53 rh.pef #FF2F80

lh.v3a #61615A rh.v3a #BA0900

lh.v7 #6B7900 rh.v7 #00C2A0

lh.ips1 #FFAA92 rh.ips1 #FF90C9

lh.ffc #B903AA rh.ffc #D16100

lh.v3b #DDEEFFFF rh.v3b #000035

lh.lo1 #7B4F4B rh.lo1 #A1C299

lh.lo2 #3000018 rh.lo2 #0AA6D8

lh.pit #013349 rh.pit #00846F

lh.mt #372101 rh.mt #FFB500

lh.mip #C2FFED rh.mip #A079BF

lh.pres #CC0744 rh.pres #C0B9B2

lh.pros #C2FF99 rh.pros #001E09

lh.pha1 #00489C rh.pha1 #6F0062

lh.pha3 #0CBD66 rh.pha3 #EEC3FF

lh.te1p #456D75 rh.te1p #B77B68

lh.tf #7A87A1 rh.tf #788D66

lh.te2p #885578 rh.te2p #FAD09F

lh.pht #FF8A9A rh.pht #D157A0

lh.ph #BEC459 rh.ph #456648

lh.tpoj2 #0086ED rh.tpoj2 #886F4C

lh.tpoj3 #34362D rh.tpoj3 #B4A8BD

http://lh.mt/
http://rh.mt/
http://lh.tf/
http://rh.tf/
http://lh.ph/
http://rh.ph/


lh.dvt #00A6AA rh.dvt #452C2C

lh.pgp #636375 rh.pgp #A3C8C9

lh.ip0 #FF913F rh.ip0 #938A81

lh.v6a #575329 rh.v6a #00FECF

lh.pha2 #B05B6F rh.pha2 #8CD0FF

lh.v4t #3B9700 rh.v4t #04F757

lh.fst #C8A1A1 rh.fst #1E6E00

lh.v3cd #7900D7 rh.v3cd #A77500

lh.lo3 #6367A9 rh.lo3 #A05837

lh.vvc #6B002C rh.vvc #772600

Visual white matter parcel-color correspondence for visual white matter network 

analyses. HCP-MMP parcel ID and Color (hex) correspondence for scatterplots in Results 

Figure 5b,c. This is also the order of the nodes found in the network matrices in Results 

Figure 5b.

Preprocessing applications implemented via brainlife.io

Application Github repository Open Service DOI Git branch

Tissue type 

segmentation

﻿https://github.com/

brainlife/app-

mrtrix3-5tt 

﻿https://doi.org/10.2

5663/brainlife.app.

239 

binarize-v1.0

Visual area 

parcellation

﻿https://github.com/

brainlife/app-

roiGenerator/ 

﻿https://doi.org/10.2

5663/brainlife.app.

411 

visual-white-matter-

glasser-dwi-v1.0

dMRI preprocessing  https://github.com/

brainlife/app-

FSLTopupEddy

﻿https://doi.org/10.2

5663/bl.app.287 ﻿

cuda-v1.0 

dMRI-T1 

Registration

https://github.com/

brainlife/app-epi-t1-

https://doi.org/10.2

5663/brainlife.app.

v1.0

http://brainlife.io/
https://github.com/brainlife/app-mrtrix3-5tt
https://doi.org/10.25663/brainlife.app.239
https://github.com/brainlife/app-roiGenerator/
https://doi.org/10.25663/brainlife.app.411
https://github.com/brainlife/app-FSLTopupEddy
https://doi.org/10.25663/brainlife.app.287
https://github.com/brainlife/app-epi-t1-registration
https://doi.org/10.25663/brainlife.app.286


registration 286

SNR Calculation ﻿https://github.com/

davhunt/app-

snr_in_cc/tree/plot 

﻿https://doi.org/10.2

5663/bl.app.120 

plot

Brain mask 

Generation

https://github.com/

brainlife/app-

FSLBET

https://doi.org/10.2

5663/brainlife.app.1

63

dwi

NODDI model fit ﻿https://github.com/

brain-life/app-

noddi-amico﻿

﻿https://doi.org/10.2

5663/brainlife.app.

365 

1.3

Diffusion Kurtosis Fit ﻿https://github.com/

dipy/bl_apps_dipy

_fit_dki 

﻿https://doi.org/10.2

5663/bl.app.9 

1.1.1

Constrained 

Spherical 

Deconvolution Fit

﻿https://github.com/

bacaron/app-

mrtrix3-act 

﻿https://doi.org/10.2

5663/brainlife.app.

238 

csd_generation-v1.0

Whole-brain 

Tractography

﻿https://github.com/

bacaron/app-

mrtrix3-act 

﻿https://doi.org/10.2

5663/brainlife.app.

297 

1.3

Merging 

Tractography Files

﻿https://github.com/

bacaron/app-

mergeTCK 

﻿https://doi.org/10.2

5663/brainlife.app.

305 

two-tck

Optic radiation 

Tractography

﻿https://github.com/

brainlife/app-

trekker-roi-tracking 

﻿https://doi.org/10.2

5663/brainlife.app.

226 

optic-radiation-v1.2

Structural 

Connectome

﻿https://github.com/

brainlife/app-sift2-

connectome-

generation﻿

﻿https://doi.org/10.2

5663/brainlife.app.

394 

sift2_v1.2_centers_n

etneuro

White Matter 

Anatomy 

Segmentation

﻿https://github.com/

brainlife/app-

wmaSeg﻿

﻿https://doi.org/10.2

5663/brainlife.app.1

88 

3.9

Remove Tract ﻿https://github.com/

brainlife/app-

﻿https://doi.org/10.2

5663/brainlife.app.1

1.3

https://github.com/brainlife/app-epi-t1-registration
https://doi.org/10.25663/brainlife.app.286
https://github.com/davhunt/app-snr_in_cc/tree/plot
https://doi.org/10.25663/brainlife.app.120
https://github.com/brainlife/app-FSLBET
https://doi.org/10.25663/brainlife.app.163
https://github.com/brain-life/app-noddi-amico
https://doi.org/10.25663/brainlife.app.365
https://github.com/dipy/bl_apps_dipy_fit_dki
https://doi.org/10.25663/bl.app.9
https://github.com/bacaron/app-mrtrix3-act
https://doi.org/10.25663/brainlife.app.238
https://github.com/bacaron/app-mrtrix3-act
https://doi.org/10.25663/brainlife.app.297
https://github.com/bacaron/app-mergeTCK
https://doi.org/10.25663/brainlife.app.305
https://github.com/brainlife/app-trekker-roi-tracking
https://doi.org/10.25663/brainlife.app.226
https://github.com/brainlife/app-sift2-connectome-generation/tree/sift2_v1.0
https://doi.org/10.25663/brainlife.app.394
https://github.com/brain-life/app-tractclassification
https://doi.org/10.25663/brainlife.app.188
https://github.com/brainlife/app-removeTractOutliers
https://doi.org/10.25663/brainlife.app.195


Outliers removeTractOutlier

s 

95 

Tract Profiles ﻿https://github.com/

brain-life/app-

tractanalysisprofiles﻿

﻿https://doi.org/10.2

5663/brainlife.app.

361 

1.13

Cortex Tissue 

Mapping

﻿https://github.com/

brainlife/app-

cortex-tissue-

mapping 

﻿https://doi.org/10.2

5663/brainlife.app.

379 

v1.2-snr-input

Cortical Summary 

Statistics

﻿https://github.com/

brainlife/app-

cortex-tissue-

mapping-stats 

﻿https://doi.org/10.2

5663/brainlife.app.

383﻿

v1.1

Description and web-links to the open-source code and open cloud services used in the 

processing of this dataset.

Additional dMRI data preprocessing and data limitations.

The version of the diffusion derivatives that we provide online have some changes with respect 

to pre-processing compared to what is demonstrated in the NSD data paper. This was done to 

improve the quality of the diffusion derivatives with respect to strong slice-motion-eddy 

interactions in the raw dMRI data.

The preprocessing changes involved using only FSL's Topup and Eddy for preprocessing. It is 

important to note that although this change in the preprocessing corrected a significant amount 

of the artifact, it may have completely rid the data of the artifact. See screenshots for examples. 

Following preprocessing, the preprocessed combined dMRI data were aligned to the 

anatomical (T1w) image and split into the subsequent runs, and all further processing was 

performed individually on each run separately.

Example of regions where updated preprocessing improved artifact correction.

https://github.com/brainlife/app-removeTractOutliers
https://doi.org/10.25663/brainlife.app.195
https://github.com/brain-life/app-tractanalysisprofiles
https://doi.org/10.25663/brainlife.app.361
https://github.com/brainlife/app-cortex-tissue-mapping
https://doi.org/10.25663/brainlife.app.379
https://github.com/brainlife/app-cortex-tissue-mapping-stats
https://doi.org/10.25663/brainlife.app.383


Example of reduced artifact following updated preprocessing. FA map of subj05 from first version of 

Example of regions where updated preprocessing did not completely correct artifact.

Example of subject where preprocessing did not completely alleviate artifact. FA map of subj05 from 



ROIs
The NSD dataset comes with a variety of regions of interest (ROIs). Some ROIs are derived 

from atlases and are automatically determined, whereas other ROIs reflect manual definition 

based on data from each subject.

Surface-derived ROIs

Some ROIs are generated from surface-based representations of the data. These ROIs 

include:

HCP_MMP1 is the Glasser et al., Nature, 2016 atlas.

Kastner2015 is the Wang et al., Cerebral Cortex, 2015 atlas.

nsdgeneral is a general ROI that was manually drawn on fsaverage covering voxels 

responsive to the NSD experiment in the posterior aspect of cortex.

corticalsulc is a folding-based atlas defined based on the curvature of fsaverage (sulci, 

gyri). It labels major sulci and some gyri throughout the whole cortex.

streams is an anatomical atlas that labels various “streams” in visual cortex. It is largely 

based on fsaverage folding but also takes into account the b3 noise ceiling results to 

ensure that the regions generally cover where there are stimulus-related signals. More 

details are provided below.

prf-visualrois is a collection of manually drawn ROIs based on results of the prf 

experiment. These ROIs consist of V1v, V1d, V2v, V2d, V3v, V3d, and hV4. These ROIs 

extend from the fovea (0° eccentricity) to peripheral cortical regions that still exhibit 

sensible signals in the prf experiment given the limited stimulus size (this means up to 

about ~5-6° eccentricity).

prf-eccrois is a collection of manually drawn ROIs that cover the exact same cortical 

extent as the prf-visualrois ROIs. These ROIs consist of ecc0pt5, ecc1, ecc2, ecc4, and 

ecc4+, and indicate increasing “concentric” ROIs that cover up to 0.5°, 1°, 2°, 4°, and 

>4° eccentricity.

floc-faces is a collection of manually drawn ROIs based on results of the floc experiment. 

These ROIs consist of OFA, FFA-1, FFA-2, mTL-faces ("mid temporal lobe faces"), and 

aTL-faces ("anterior temporal lobe faces"). These ROIs were the result of (liberal) 

thresholding at t > 0 (flocfacestval).

floc-words is a collection of manually drawn ROIs based on results of the floc experiment. 

These ROIs consist of OWFA, VWFA-1, VWFA-2, mfs-words ("mid fusiform sulcus 

words"), and mTL-words ("mid temporal lobe words"). These ROIs were the result of 

(liberal) thresholding at t > 0 (flocwordtval).



floc-places is a collection of manually drawn ROIs based on results of the floc 

experiment. These ROIs consist of OPA, PPA, and RSC. These ROIs were the result of 

(liberal) thresholding at t > 0 (flocplacestval).

floc-bodies is a collection of manually drawn ROIs based on results of the floc 

experiment. These ROIs consist of EBA, FBA-1, FBA-2, and mTL-bodies ("mid temporal 

lobe bodies"). These ROIs were the result of (liberal) thresholding at t > 0 (flocbodiestval).

Note that for the floc-faces, floc-words, and floc-bodies ROIs, not all subjects have all of these 

ROIs in every hemisphere.

Please note that the floc-related ROIs are quite liberal (given the threshold of t > 0) and will 

look quite "large" relative to what one may be typically used to. It is a good idea to carefully 

visualize the ROIs; you can easily whittle down the ROIs using a more stringent threshold if 

you desire.

The ROIs listed above are initially defined in surface space. For convenience, we have also 

created volumetric versions of the ROIs. Values of -1 indicate non-cortical voxels in the case of 

ROIs in volume format. Values of 0 indicate non-labeled vertices/voxels. Positive integers 

indicate labelings for vertices/voxels.

When surface-based ROIs are converted to volume format, there is an implicit parameter that 

controls the spatial extent of the volume version. We attempted to create volume ROIs that are 

not too liberal and not too conservative.

Note that although surface-defined ROIs in floc-faces, floc-words, floc-places, and floc-bodies 

are guaranteed to be t > 0, after conversion to volume space, this constraint may not be entirely 

still true. If you use the volume versions, you may want to consider further shrinking down these 

ROIs.

Volume-derived ROIs

Some ROIs are generated from volume-based representations of the data. These ROIs 

include:

thalamus provides manual segmentation of thalamic regions: LGN, SC, and pulvinar 

(several subdivisions). Regions were defined in each hemisphere by an expert. Definition 

was based mostly on T1 anatomical data, but for the pulvinar, MNI-based results from 

other datasets were projected to each subject to aid ROI definition. Note that as a matter 

of definition, the ventral pulvinar is most correlated with early visual cortex; the dorsal 

lateral pulvinar is most correlated with the attention network; and the dorsal medial 



pulvinar is most correlated with the default-mode network. Additional information: LGN and 

SC were defined based on T1 and T2 image contrast. For the ventral pulvinar, the extent 

of the pulvinar was defined based on T1 and T2 contrast and then constrained to the 

ventral lateral portion based on the extent of the two ventral pulvinar maps reported in 

Arcaro et al., Journal of Neuroscience, 2015. The dorsolateral pulvinar was based on the 

average correlation with IPS maps; and the dorsomedial pulvinar was based on average 

correlation with precuneus (as reported in Arcaro et al. Nature Communications 2018).

MTL provides manual segmentation of various regions in the medial temporal lobe, 

including hippocampal subfields. A expert human annotator used the raw high-resolution 

T2 volumes and manually segmented regions according to Berron et al., NeuroImage 

Clinical, 2017 for each of the 8 NSD subjects. These ROI labelings were then co-

registered to the official isotropic T2 volume space and processed. 

Also, note that ROI labels are mutually exclusive across hemispheres (i.e. every voxel is either 

assigned to the left hemisphere, right hemisphere, or neither).

ROI files

For convenience, ROI files have been prepared in multiple spaces. ROI files are available in 

functional spaces (func1pt8mm, func1mm) as well as anatomical spaces (anat). For ROIs in 

anatomical space, we provide ROIs at 0.8-mm anatomical resolution. ROI files are also 

available in surface space (FreeSurfer .mgz).

nsddata/ppdata/subjAA/*/roi/[lh,rh].EEE.nii.gz

 

These are volumes providing integer labels for ROI EEE, generated separately for each 

hemisphere.



subj01/func1pt8mm/roi/lh.Kastner2015.nii.gz

 

nsddata/ppdata/subjAA/*/roi/EEE.nii.gz

 

These are volumes providing integer labels for ROI EEE, combining across hemispheres.

subj01/func1pt8mm/roi/prf-eccrois.nii.gz

nsddata/ppdata/subjAA/anat/roi/other/*.nii.gz

 



The thalamus and MTL segmentations are originally drawn at 0.5-mm; for completeness, 

we provide here the original anat0pt5 version of these segmentations, as well as an 

anat1pt0 version of these segmentations.

nsddata/freesurfer/*/label/[lh,rh].EEE.mgz

 

These are surface files providing integer labels for ROI EEE.

subj01/label/lh.prf-

nsddata/freesurfer/*/label/EEE.mgz.{ctab,txt}

 

This is a text file specifying the meaning of the labels in surface-based ROI EEE. (The 

same labels apply to volume versions of the ROI.) In other words, this is the critical text file 

that tells you what each of the integer labels means in terms of ROI names.

prf-visualrois:

V1d,V1v,V2d,V2v,V3d,V3v - dorsal and ventral subdivisions of V1, V2, and V3

hV4 - human V4

prf-eccrois:

ecc0pt5,ecc1,ecc2,ecc4,ecc4+ - eccentricity-restricted regions within early 

visual areas V1, V2, and V3

floc-faces:

OFA - occipital face area

FFA-1 - posterior section of fusiform face area

FFA-2 - anterior section of fusiform face area

mTL-faces - face-selective region in middle portion of temporal lobe

aTL-faces - face-selective region in anterior portion of temporal lobe

floc-words:



OVWFA - occipital visual word form area

VWFA-1 - posterior section of visual word form area

VWFA-2 - anterior section of visual word form area

mfs-words - word-selective region located near the mid-fusiform sulcus

mTL-words - word-selective region in middle portion of temporal lobe

floc-places:

OPA - occipital place area

PPA - parahippocampal place area

RSC - retrospenial cortex (place-selective)

floc-bodies:

EBA - extrastriate body area (can also be referred to as LOTC-bodies (lateral 

occipitotemporal cortex))

FBA-1 - posterior section of fusiform body area (can also be referred to as 

VOTC-bodies-1 (ventral occipitotemporal cortex))

FBA-2 - anterior section of fusiform body area (can also be referred to as VOTC-

bodies-2)

mTL-bodies - body-selective region in middle portion of temporal lobe

nsddata/templates/EEE.ctab

 

This is a text file specifying the meaning of the labels in volume-based ROI EEE. For 

example, EEE can be "thalamus" or "MTL". 

Probmap files

For convenience, we also create "probmap" (probabilistic map) results. Specifically, we take 

each manually defined cortical ROI and map these via nearest-neighbor interpolation to 

fsaverage and then compute the fraction of subjects at each vertex that has each individual 

ROI present.

nsddata/freesurfer/fsaverage/label/[lh.rh].RRR.mgz

This file consists of fractions between 0 and 1. The value indicates the fraction of subjects 

that have ROI RRR present at a given fsaverage vertex.



fsaverage/label/rh.PPA.mgz

Other files

The following files are intermediate files created in the process of the manual segmentation of 

the MTL ROI collection.

nsddata/ppdata/subjAA/anat/HRT2/HRT2_raw.nii.gz

 

The raw high-resolution T2 volume used for MTL segmentation.

 

nsddata/ppdata/subjAA/anat/HRT2/HRT2_mask.nii.gz

 

The binary mask within which an affine transformation was optimized to match the official 

0.5-mm T2 volume.

 

nsddata/ppdata/subjAA/anat/HRT2/MTL_rawlabels.nii.gz

 

The manually defined MTL labels (same space as the HRT2_raw.nii.gz volume).

 

nsddata/ppdata/subjAA/anat/HRT2/T2matched.nii.gz

 

Given the affine transformation determined (within the HRT2_mask), this volume is the 

result of reslicing through the 0.5-mm T2 volume to match the HRT2_raw volume (cubic 

interpolation).

Additional information on the streams ROIs



    

Early visual cortex ROI:

The early visual cortex ROI was drawn as the union of the V1v, V1d, V2v, V2d, V3v and 

V3d ROIs from the Wang 2015 retinotopic atlas. Additionally, V2v and V2d were 

connected such that the part of the occipital pole typically containing foveal 

representations was also included. The same was repeated for V3v and V3d.

Intermediate ROIs:

Three intermediate ROIs were drawn corresponding to each of the three streams: ventral, 

lateral and parietal. All three ROIs border the early visual cortex ROI on the posterior side.

The intermediate ventral ROI was drawn to reflect the inferior boundary of hV4 from the 

Wang atlas and to include the inferior occipital gyrus (IOG), with the anterior border of the 

ROI drawn based on the anterior edge of the inferior occipital sulcus (IOS). 

The intermediate lateral ROI was drawn directly superior to the intermediate ventral ROI, 

with the superior and anterior borders determined as the LO1 and LO2 boundaries from 

the Wang atlas.

The intermediate parietal ROI was drawn directly superior to that, reflecting exactly the 

borders of the union of V3A and V3B from the Wang atlas.

Higher-level ROIs:

Three higher-level ROIs were drawn for each of the ventral, lateral and parietal streams, 

bordering their respective intermediate ROIs on their posterior edges.

The ventral ROI was drawn to follow the anterior lingual sulcus (ALS), including the 

anterior lingual gyrus (ALG) on its inferior border and to follow the inferior lip of the inferior 

temporal sulcus (ITS) on its superior border. The anterior border was drawn based on the 

midpoint of the occipital temporal sulcus (OTS).

The lateral ROI was drawn such that the higher-level ventral ROI was its inferior border 

and the superior lip of the superior temporal sulcus (STS) was used to mark the 

anterior/superior boundary. The rest of the superior boundary traced the edge of angular 

gyrus, up to the tip of the posterior STS (pSTS). 

The parietal ROI was drawn to reflect the boundary of the lateral ROI on its inferior edge 

and to otherwise trace the borders of and include the union of IPS0, IPS1, IPS2, IPS3, 

IPS4, IPS5 and SPL1 from the Wang atlas.



Technical notes
This section contains a number of technical details that help document the NSD dataset.

Final numbers

Some of the NSD subjects did not complete all 40 planned NSD core scan sessions. Here we 

provide some useful summary statistics on what is present in the NSD dataset. Note that the 

numbers are calculated with respect to the full dataset).

How many core NSD scan sessions did each of the 8 NSD subjects complete?

[40 40 32 30 40 32 40 30]

How many distinct images were shown at least once to each subject?

[10,000 10,000 9,411 9,209 10,000 9,411 10,000 9,209]

How many distinct images were shown at least twice to each subject?

[10,000 10,000 8,355 7,846 10,000 8,355 10,000 7,846]

How many distinct images were shown all three times to each subject?

[10,000 10,000 6,234 5,445 10,000 6,234 10,000 5,445]

How many trials did each subject perform?

[30,000 30,000 24,000 22,500 30,000 24,000 30,000 22,500]

How many of the shared 1,000 images were shown at least once to each subject?

[1,000 1,000 930 907 1,000 930 1,000 907]

How many of the shared 1,000 images were shown all 3 times to every subject?

515

How many of the shared 1,000 images were shown at least 2 times to every subject?

766

How many of the shared 1,000 images were shown at least once to every subject?

907

What is the total number of distinct images, aggregated across all subjects?

70,566

What is the total number of trials, aggregated across all subjects?

213,000

Data sizes



The following are the matrix dimensions for the high-res (1.0-mm) functional data preparation, 

matrix dimensions for the standard-res (1.8-mm) functional data preparation, the vertex number 

in the left-hemisphere cortical surfaces, and the vertex number in the right-hemisphere cortical 

surfaces.

 

Subject 1      [145 186 148]  [81 104 83]    227021 226601

Subject 2      [146 190 150]  [82 106 84]    239633 239309

Subject 3      [145 190 146]  [81 106 82]    240830 243023

Subject 4      [152 177 143]  [85 99 80]     228495 227262

Subject 5      [141 173 139]  [79 97 78]     197594 198908

Subject 6      [152 202 148]  [85 113 83]    253634 259406

Subject 7      [139 170 145]  [78 95 81]     198770 200392

Subject 8      [143 184 139]  [80 103 78]    224364 224398

On the issue of valid voxels

Due to spatial distortion and/or head displacement over the course of a scan session, voxels on 

the edges of the imaged volume may not obtain a full set of data for that session. In pre-

processing, such voxels are detected, deemed “invalid”, and are essentially set to 0 for the 

whole scan session. For the most part, brain voxels of interest are almost always valid.

 

The files named valid*.nii.gz provide information regarding which voxels contain valid data. 

Invalid voxels exhibit the following behavior:

timeseries*.nii.gz – Invalid voxels have pre-processed time-series data values that are all 

zeroes over the course of the entire scan session.

mean*.nii.gz – Invalid voxels have a mean intensity of 0.

R2*.nii.gz – Invalid voxels have a GLM variance explained value of NaN.

betas*.[nii.gz,hdf5] – Invalid voxels have betas that are all zeroes. (This is the result of the 

data being saved in int16 format, which converts NaNs to 0.)

meanbeta*.nii.gz – Invalid voxels have mean betas equal to 0.

onoffbeta*.nii.gz – Invalid voxels have onoffbeta weights equal to NaN.

Note that voxels outside of the brain mask are also set to 0 in the time-series data and in the 

beta weights; thus, they appear similar to invalid voxels.

Computational tips



The massive scale of the NSD dataset poses some computational challenges. Here we 

comment on some issues related to computational efficiency. 

File format choices are important. HDF5 provides fast access because it is uncompressed.

Pre-allocation of variables when loading data into memory is important (otherwise, 

unnecessary time costs are incurred).

Consider using 'single' or 'float' format to save memory usage.

For huge data, breaking up the analysis into chunks may be necessary in order to reduce 

memory usage (e.g., analyze one subject at a time).

In general, when loading in chunks from an HDF5 file, it is fastest to load chunks from the 

last dimension. However, the HDF5 files used for the NSD betas were saved with 

ChunkSize [1 1 1 750], which means that the trials were deliberately chunked together 

when saved. This was done because in theory, one will probably want to always get all of 

the trials (from a given set of voxels). Speed benefits for the NSD betas would be obtained 

when loading chunks from the third dimension (as opposed to the first or second 

dimensions).

Vectorization of code is important (avoid for-loops if possible).

If averaging across trials for the same image, one can do this efficiently through a single 

indexing operation (e.g. an indexing matrix that is 3 trials x N images), as opposed to using 

a for-loop.

Timing issues

Here is how timing issues are dealt with in the NSD dataset:

An empirical audio check of a typical fMRI scanning run (i.e. an NSD run involving 188 

volumes at a TR of 1.6 s) indicates the following breakdown: There is 31.8 s from the start 

of scanner calibration noises to the start of the EPI noises; then, there is 8 s from the start 

of EPI noises until the start of the first actual recorded fMRI volume (the 8 s is due to 

dummy fMRI volumes); and, finally, there is 300.8 s (i.e. 188*1.6) from the start of the first 

recorded fMRI volume until the end of the EPI noises (indicating that data collection is 

complete). Thus, the dummy fMRI volumes are already dropped and do not show up in the 

NSD dataset. We consider the start of the first recorded fMRI volume to be time = 0.

The fMRI volumes are acquired at 1600 ms TR, and this is assumed to be exactly 

accurate. Empirical measurements of scanner triggers, as detected by the stimulus 

computer, indicate that the difference between successive triggers is consistently between 

1599.95 and 1600.12 ms. Some of this variability is due to polling uncertainty. We believe 

this is good validation that the 1600 ms number can be trusted.



The stimulus computer controls the experiment presentation. The presentation code locks 

to the display rate of the BOLDscreen monitor, and empirical measurements of the 

duration of each 5-min (300 s) run come out to consistently between 299.955 s and 299.97 

s. Thus, we are confident that the timing of the experimental presentation is highly reliable. 

Because these values are not exactly 300.000 s, in the pre-processing of the fMRI data, 

we resample the fMRI data to a sampling rate of 0.999878 s. (Note that 0.999878*300 = 

299.9634 s.) Specifically, the high-resolution (func1mm) preparation of the data uses a 

new sampling rate of 0.999878 s, while the low-resolution (func1pt8mm) preparation of the 

data uses a new sampling rate of (0.999878)*(4/3) = 1.3331707 s. These numbers are 

quite close to 1 s and 4/3 s, respectively, and we often abbreviate using those numbers for 

simplicity.

Note that the fMRI acquisition extends slightly longer than the experiment duration. For 

example, for a typical NSD run, the experiment lasts 299.9634 s, while the fMRI 

acquisition lasts 188 * 1.6 = 300.8 s. This is intentional and no cause for concern.

With respect to the pre-processing of the fMRI data, the total duration of the func1mm 

preparation of each fMRI run is 0.999878 * 301 volumes = 300.96 s. The total duration of 

the func1pt8mm preparation of each fMRI run is (0.999878)*(4/3) * 226 volumes = 301.29 

s. Notice that the two numbers are slightly different, and extend slightly beyond the original 

extent of the acquisition (1600 ms * 188 volumes = 300.8 s). This is all expected behavior, 

and is due to how the pre-processing code decides to place the final time points.

After the pre-processing of the fMRI data, it is convenient to simply interpret the fMRI data 

as being sampled at a rate of 1 s (or 4/3 s), even though that is not exactly accurate.

Slice acquisition order was determined from the DICOM header of the fMRI volumes. In 

the temporal pre-processing of the fMRI data, all slices were sampled to be coincident with 

the first (temporally) acquired slices. (Note that multiple slices were “first” because of the 

multiband acquisition.)

The experimental design comes in 4-s trials; thus, fMRI volumes after pre-processing land 

exactly on the onset of each trial (4 s is divisible by 1 s and by 4/3 s).

At the beginning of each run, the stimulus computer waits for a trigger to be sent by the 

MRI scanner, and once the trigger is detected, the computer starts the experiment. Note 

that there is a brief and somewhat variable (about 5-20 ms) delay that persists between 

the detection of the trigger and the first stimulus frame shown (e.g. due to the fixed refresh 

rate of the monitor). Thus, there may be a small (and more or less fixed) delay between the 

fMRI data and the stimulus frames. This seems like a relatively minor issue: the readout of 

the first slice in the EPI sequence itself takes some time, so there is already a delay (e.g. 

half of the readout window) that is essentially being ignored here. 

The internal MR scanner clock shows some odd behavior. According to the stored 

AcquisitionTime header of the EPI DICOMs, we extracted the average duration of each 

TR volume and that number comes out to 1606.425 ms. This is surprising since the 

empirical measurements from the stimulus computer indicate that the TR (as reflected in 



the triggers that are sent by the scanner) is essentially exactly 1600 ms. Checks that we 

performed strongly suggest that, for the purposes of internal times recorded by the 

scanner in the DICOMs and in the physiological data, it does seem that the MR scanner 

believes the DICOMs come at a rate of 1606.425 ms. We found that under the 

assumptions we make when extracting the physiological data, the physiological data and 

the DICOM times are very nicely consistent with one another. Moreover, the number of 

samples that we extract corresponding to the actual fMRI acquisition does empirically turn 

out to be around 15040-15041, which is essentially exactly 50 Hz for a run duration of 

188*1.6=300.8 s. Thus, our working interpretation is that (i) the correct time is being 

recorded by the stimulus computer; (ii) the MR scanner in fact achieves exactly the time 

requested (1600 ms TR); (iii) the MR scanner has some strange internal timing system 

that is internally consistent but which does not match the stimulus computer’s timing, and 

(iv) the user need not worry about the strange MR scanner timing.

FreeSurfer notes
FreeSurfer includes an internal T1 volume (e.g. mri/T1.mgz). Beware that although this 

volume contains basically the same image data as the original 0.8-mm anatomical volume 

that we provided to FreeSurfer, it has some header differences. Thus, if you were to load in 

the raw image data from the two volumes, in order to get them to match up, you may have 

to apply a specific set of flips, rotations, and shifts. This is because the orientation and 

exact positioning of the two volumes are different. A NIFTI-header-aware application that 

knows how to properly interpret the orientation and origin information will reveal that the 

two volumes are identical, in the sense that both volumes, when properly interpreted, are 

in the same position (e.g. (0,0,0) in millimeters corresponds to the same location in the two 

volumes). The following shows how the image data (ignoring headers) can be matched 

between the two volumes. 

1 % load aseg

2 sourcedata = '~/nsd/nsddata/freesurfer/subj01/mri/aseg.mgz';

3 vol = cvnloadmgz(sourcedata);

4

5 % bring it to our anat0pt8 space

6 vol = flipdim(flipdim(permute(vol,[1 3 2]),3),1);

7 volB = zeros(size(vol));

8 volB(2:end,:,2:end) = vol(1:end-1,:,1:end-1);

Note that we have converted some of the standard FreeSurfer output volumes to conform 

to the formats used for the NSD data. For example: 

nsddata/ppdata/subj01/func1pt8mm/aseg.nii.gz



The FreeSurfer surfaces (e.g. lh.white) have coordinates that must be interpreted with 

respect to the FreeSurfer headers. This is quite tricky, and requires using the FreeSurfer 

vox2ras and vox2ras-tkr information. Here is the basic idea (see 

preprocess_nsd_calculatetransformations.m) for how we map FreeSurfer’s surface 

coordinates to a 1-based coordinate system that corresponds to the official T1 0.8-mm 

anatomical volume:

newcoord = inv(M)*Norig*inv(Torig)*[tkrR tkrA tkrS 1]’ + 1

where [tkrR tkrA tkrS] are coordinates stored in the surface file, Torig is the output from 

vox2ras-tkr, Norig is the output from vox2ras, and M is the voxel-to-world transformation 

from the official T1 0.8-mm anatomical volume. The idea is that we first map from surface 

coordinates to 0-based pixel (CRS) space (i.e. inv(Torig)), then we map from FreeSurfer’s 

0-based pixel space to physical RAS space (i.e. Norig), and then we map from physical 

RAS space to 0-based pixel space associated with the official T1 0.8-mm anatomical 

volume. Finally, we add 1 to the coordinates in order to convert to 1-based pixel space (i.e. 

1 means the center of the first voxel).

In the diffusion files (nsddata_diffusion), various cortical surfaces are provided in GIFTI 

format. The coordinates contained in these GIFTI files are "world coordinates" and they 

are identical to the surface coordinates contained in the usual FreeSurfer surface files after 

making sure to convert the surface coordinates to physical RAS space.

MNI notes
All NIFTI files that we write are in LPI ordering (the first voxel is Left, Posterior, and 

Inferior). This applies even to files written by nsd_mapdata in the MNI space. Note that this 

is the same as what FreeSurfer calls “RAS” ordering, since that nomenclature refers to 

which directions have increasing voxel indices.

The MNI template (1mm) (borrowed from FSL) has matrix dimensions [182 218 182] and 

is in RPI ordering (first voxel is right, posterior, inferior). The origin lies at 1-based image 

coordinates (91,127,73).

NSD files provided in MNI (1mm) space have the same matrix dimensions [182 218 182] 

and are in LPI ordering. The origin lies at 1-based image coordinates (92,127,73). Note 

that while the MNI template is in RPI ordering, NSD files that are provided in MNI space 

are in LPI ordering. When comparing these two types of files in an application that 

understands and respects the NIFTI header information, everything should be correct and 

in correspondence.

When using nsd_mapdata to map from MNI to some other space, note that the source 

data is expected to be in RPI ordering (since that is what the MNI template uses). 

This means that if one performs analyses of, for example, the NSD beta weights prepared 



in MNI space (which have LPI ordering), the results need to be flipped along the first 

dimension before being passed to nsd_mapdata.m.

Furthermore, when trying to map MNI source data, the data should be EXACTLY in 

the same resolution, matrix size, etc. as the MNI 1mm template. (For example, if your 

MNI source data is 2-mm, you need to bring it to 1-mm resolution.) There are many 

ways to do this; one option is resliceniftitomatch.m as provided in 

https://github.com/cvnlab/knkutils/

When using nsd_mapdata to map to MNI space, note that the output variable is 

returned to the workspace in RPI ordering. But notice that if you ask nsd_mapdata 

to write out a NIFTI file, that file has data stored in LPI ordering.

All NIFTI files that we write have the origin set to the exact center of the image slab. The 

only exception to this is when nsd_mapdata writes out MNI space files: in this case, we set 

the origin to match that used in the MNI template files.

Other notes
Recorded reaction times in the behavioral data have some rounding error due to the 

presentation of images at a 10 Hz rate. That is, the stimulus computer both controls image 

presentation and tries to record button presses. Approximately every 100 ms, the stimulus 

computer has to do work to present the image, and at these points in time, if there is a 

button that is pressed, it will be logged a few milliseconds late. (You will see this weird 

effect if you plot a histogram of a large number of RTs in bin widths of 1 ms.)

Note that the func1pt8mm and func1pt0mm have origins that are in slightly different 

places. This is because the field of view of the two preparations are different and because 

we set the origin to be the center of the image slab in both cases.

Transform files

Various coregistration procedures were performed in the pre-processing of NSD data, and the 

results of these procedures have been written out to a collection of files. Essentially, we have 

pre-computed a large number of possible mappings that the user might want to perform. These 

pre-computed transform files are used by the nsd_mapdata utility in order to map data from one

space to another, and ordinary users should not need to worry about the contents of these files.

nsddata/ppdata/subjAA/transforms/

This directory contains the set of pre-computed transform files for subject AA.

https://github.com/cvnlab/knkutils/


Note that file format conventions vary across different software packages. Thus, these 

files are not necessarily "standard" and not necessarily compatible "off the shelf" with a 

given software package!

The basic form of a filename is "X-to-Y", indicating that this file contains information on 

how to access data from X for each location in Y. For example, "func1pt0-to-MNI.nii.gz" is 

a NIFTI file with the dimensionality of the 1-mm MNI space; there are three volumes in this 

file, corresponding to three spatial dimensions; and each value indicates how to pull from 

the 1.0-mm functional space. Intuitively, this file provides func1pt0 coordinates in an MNI-

like volume.

Our convention is to use image coordinates for volume data. For example, 1 is the center 

of the first voxel; 2 is the center of the second voxel; and 1.5 is exactly in between the 

centers of the first and second voxels. Furthermore, our convention is to use 1-based 

indexing for surface data. For example, 1 indicates the first surface vertex.

To conform to FreeSurfer conventions, files named like "lh.X-to-Y.mgz" indicate how to 

access data from X for each location in the left hemisphere Y surface. For example, 

"lh.func1pt8-to-layerB2.mgz" indicates, for each surface vertex in the mid-gray left 

hemisphere cortical surface, how to pull data from the 1.8-mm functional volume.

For transform files involving fsaverage, all values are indices and not spatial locations 

(since our convention is to use nearest-neighbor interpolation for fsaverage-related 

transformations).

Additional documentation can be found in preprocess_nsd_calculatetransformations.m.



Code
Several code resources are provided with the NSD dataset. See the nsddatapaper github 

repository for an archive of code used in the NSD data paper. Below, we document other 

resources.

nsd_mapdata
We provide a lightweight github repository:

http://github.com/kendrickkay/nsdcode/﻿

This repository contains the utility nsd_mapdata.{m,py}, which helps map data between the 

various spaces used in the NSD dataset (see Spaces for imaging data⁠ ). In brief, 

transformations between various spaces (e.g. functional, anatomical, MNI, fsaverage) have 

been pre-computed, and the utility simply loads in these transformations and applies them to 

user-supplied data.

Example scripts demonstrating usage of nsd_mapdata are provided: examples_nsdmapdata.

{m,py}. In addition, we provide a video that walks through the example script: 

https://www.youtube.com/watch?v=XeiyFEr29gA

nsd_mapdata

https://www.youtube.com/watch?v=XeiyFEr29gA

Some notes on using nsd_mapdata:

Three types of interpolation are available: nearest-neighbor, linear, or cubic.

Be careful about the choice of interpolation. In particular, when mapping volume data to 

the cortical surface, it is easy for "holes" to occur, depending on the extent to which valid 

values exist in the volume data and depending on the type of interpolation used.

In general, transformation between volume and surface spaces is lossy, in the sense that 

information loss and discretization errors are inevitable. One strategy is to perform 

analysis of the functional data fully in volume format and then transform to surface space 

at the very end (e.g. for visualization). A different strategy is to simply start up front with the 

"nativesurface" preparation (in which we have already transformed/interpolated the NSD 

betas to FreeSurfer's surface space) and then conduct analyses.

The conversion of surface data to volume format is a tricky procedure that involves certain 

assumptions. One particular method is implemented by nsd_mapdata (and is described in 

https://github.com/kendrickkay/nsddatapaper/
http://github.com/kendrickkay/nsdcode
https://slite.com/api/public/notes/khB~wb7gpU/redirect
https://www.youtube.com/watch?v=XeiyFEr29gA
https://www.youtube.com/watch?v=XeiyFEr29gA


the NSD data paper), and this method was used in order to create volumetric versions of 

surface-oriented ROI labels (e.g. prf-visualrois). Other methods are possible.



Example text for papers
The following is a text template that may be useful for briefly describing the NSD dataset in a 

paper that uses the NSD data. Of course, you may need to modify or expand as necessary.

 

Natural Scenes Dataset

 

A detailed description of the Natural Scenes Dataset (NSD; 

http://naturalscenesdataset.org) is provided elsewhere {cite Allen et al., Nature 

Neuroscience, 2021}. The NSD dataset contains measurements of fMRI responses from 8 

participants who each viewed 9,000–10,000 distinct color natural scenes (22,000–30,000 

trials) over the course of 30–40 scan sessions. Scanning was conducted at 7T using 

whole-brain gradient-echo EPI at 1.8-mm resolution and 1.6-s repetition time. Images were 

taken from the Microsoft Common Objects in Context (COCO) database {cite Lin 2014}, 

square cropped, and presented at a size of 8.4° x 8.4°. A special set of 1,000 images 

were shared across subjects; the remaining images were mutually exclusive across 

subjects. Images were presented for 3 s with 1-s gaps in between images. Subjects 

fixated centrally and performed a long-term continuous recognition task on the images. 

The fMRI data were pre-processed by performing one temporal interpolation (to correct for 

slice time differences) and one spatial interpolation (to correct for head motion). A general 

linear model was then used to estimate single-trial beta weights. Cortical surface 

reconstructions were generated using FreeSurfer, and both volume- and surface-based 

versions of the beta weights were created.

Natural Scenes Dataset (extremely abbreviated)

The NSD dataset contains measurements of 7T fMRI responses (1.8 mm, 1.6 s) from 8 

participants who each viewed 9,000–10,000 distinct color natural scenes (22,000–30,000 

trials). Subjects fixated centrally and performed a long-term continuous recognition task on 

the images.

 

Other snippets of text that might be useful as a template:

The dataset includes additional measures including structural (T1, T2), diffusion, and 

resting-state data.

http://naturalscenesdataset.org/


In this paper, we used the 1.8-mm volume preparation of the NSD data and version 3 of 

the NSD single-trial betas (betas_fithrf_GLMdenoise_RR).

We used the ‘nativesurface’ preparation of the NSD betas.

We used the nsd01–nsd10 scan sessions from all 8 NSD subjects.

If you make use of the NSD dataset, please cite the NSD data paper:

Allen, St-Yves, Wu, Breedlove, Prince, Dowdle, Nau, Caron, Pestilli, Charest, 

Hutchinson, Naselaris*, & Kay*. A massive 7T fMRI dataset to bridge cognitive 

neuroscience and artificial intelligence. Nature Neuroscience (2021).﻿

In addition, please acknowledge the NSD funding sources using wording similar to:

Collection of the NSD dataset was supported by NSF IIS-1822683 and NSF IIS-1822929.

https://doi.org/10.1038/s41593-021-00962-x


FAQ
This page lists frequently asked questions about the NSD dataset. If you have questions that 

are not answered on this page, please post to the nsd-users mailing list. This FAQ will be 

updated as questions arise.

"I need help double-checking the indexing of the images (e.g. figuring out which images 

were seen by all subjects). Do you have any pointers?"

The following script might be helpful to see some examples of how to handle tricky 

indexing. Note that this is MATLAB, so the indices are generally 1-based in this script: 

https://github.com/cvnlab/nsddatapaper/blob/main/mainfigures/FINALNUMBERS/

FINALNUMBERSnotes.m

Note that the full set of 40 NSD scan sessions were collected for four of the eight subjects 

but that only the first 30 or 32 NSD scan sessions were collected for the other four 

subjects. Hence, for exact numbers you must take this into account. Also, note that the 

numbers of images for which responses are available depend on whether you have access 

to all collected NSD scan sessions or not. (Remember that the last 3 NSD scan sessions 

from each subject are held-out from public release due to the Algonauts challenge. For 

example, there were actually 40 NSD scan sessions collected for subject 1, but only the 

first 37 scan sessions are publicly downloadable.)

Here is a simple example showing how to determine which of the shared 1,000 images 

were seen all 3 times by all 8 subjects (assuming that the full dataset is downloaded). Note 

the subjects who had the fewest scan sessions had 30 NSD scan sessions. Hence, we 

use "30" in the code snippet below. (To figure out which of the shared 1,000 images were 

seen all 3 times by all 8 subjects within the currently downloadable data, you would simply 

substitute "27" for "30" in the code snippet below.)

1 temp = masterordering(1:750*30);  % 750 trials per session; all

8 subjects participated in at least the first 30 NSD scan

sessions

2 shared515 = [];  % 1 x 515 vector of 1-indices. these indices

are between 1-1000.

3 for q=1:1000

4 if sum(temp==q)==3

5 shared515 = [shared515 q];

https://groups.google.com/forum/#!forum/nsd-users
https://github.com/cvnlab/nsddatapaper/blob/main/mainfigures/FINALNUMBERS/FINALNUMBERSnotes.m


6 end

7 end

"Can I average prf time-series data across runs? Do they have different stimulation 

protocols?"

As described in the NSD data paper, the prf experiment involved six runs acquired as 

BWBWBW (where B and W refer to multibar and wedgering run types). The spatial 

aperture pattern was identical within each run type, and hence averaging is reasonable 

(e.g. average the Bs together; average the Ws together). (However, note that the specific 

colorful texture shown at a given point in time and the precise fixation dot behavior are 

stochastic across runs and are therefore not exactly identical across runs.)

"I am getting "access denied" errors and/or I am getting 403 errors from AWS ("fatal error: 

An error occurred (403) when calling the HeadObject operation: Forbidden"). Can you 

help?"

A subset of the NSD data files (e.g. nsdsynthetic, nsdimagery) is forbidden from being 

downloaded at this point (see 'Held-out data' on the  page).⁠⁠Untitled⁠

"I want to transform the surface-defined ROI masks provided with NSD into a format that 

works with pycortex. How do I do this?"

Pycortex involves creating .svg files for ROI masks. Please see 

https://github.com/gallantlab/pycortex/issues/312 for more information.

"What is the breakdown of image databases NSD pulls from and what 

resources/annotation already exist for those?"

All NSD images come from the Microsoft COCO image database. As for resources, there 

are a number of online 'computer vision' resources that provide a wealth of annotations on 

the COCO images (see http://cocodataset.org/#external). In addition, note that the 

externally contributed nsd_access toolbox (see General Information⁠ ) provides a 

convenient Python interface for understanding how the images selected for use in NSD are 

mapped onto the COCO images.

"How do I load in the NSD-generated ROI files, like lh.floc-faces.mgz, into FreeSurfer's 

freeview? It won't load in freeview as a surface annotation."

https://slite.com/api/public/notes/AGEte5w9Nq/redirect
https://github.com/gallantlab/pycortex/issues/312
http://cocodataset.org/#external
https://slite.com/api/public/notes/M3ZvPmfgU3/redirect


If you use the "Overlay → Load generic..." option, freeview should be able to load and 

interpret the surface data in the .mgz files. 

"How do I map from MNI to fsaverage and/or vice versa?"

Since MNI and fsaverage are fundamentally different in nature (volume vs. surface-based), 

the mapping is, in general, a bit ill-defined. But given that we have lots of information on 

the 8 NSD subjects, you could use nsd_mapdata (volume-to-nativesurface option) to go 

from MNI to the native subject surfaces (e.g. [lh,rh].layerB2), and then use nsd_mapdata 

(nativesurface-to-fsaverage option) to go from the native subject surface space (e.g. 

[lh,rh].white) to fsaverage. You could repeat this process for each of the NSD subjects and 

then you could average the results in fsaverage space. For additional ideas and 

background, see here.

"How do I map a specific MNI coordinate using nsd_mapdata?"

The easiest approach would be to copy the MNI 1mm NIFTI template 

(MNI152_T1_1mm.nii.gz), modify the image data inside the template to specifically label 

the MNI coordinate that is desired (ITK-SNAP reports the MNI coordinate as "World units 

(NIFTI)") (e.g., create a binary volume with a "1" at the location of interest), load the image 

data, and then use nsd_mapdata to map the image data to some other space. Note that 

the motivation for building off of the MNI template is to ensure that the headers and the RPI 

ordering is all preserved and handled correctly.

"I want to use some of the FreeSurfer outputs, but I am having trouble getting the outputs 

to work well with nsd_mapdata."

There are tricky issues in terms of how the volume data stored in, e.g., the .mgz files are 

oriented (e.g., NIFTI header issues). The best bet is to see how we handled this in the 

code: 

https://github.com/cvnlab/nsddatapaper/blob/main/main/analysis_transforms.m

"How can I access the gradient nonlinearity information?"

The pre-processed files provided with NSD involved correcting for gradient nonlinearities 

(these are fairly negligible for the 3T data, but are somewhat substantial for the 7T data). 

We cannot publicly supply the gradient coefficient files. The following information was 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6239990/
https://github.com/cvnlab/nsddatapaper/blob/main/main/analysis_transforms.m


taken from the Human Connectome Project, and it is assumed to apply equally to NSD: 

"The gradient field coefficients are considered proprietary and need to be obtained from 

your institution's Siemens collaboration manager. Your institution must have a research 

agreement or be willing to sign a non-disclosure agreement with Siemens. Contact Yulin 

Chang ( yulin.chang@siemens-healthineers.com) (USA) or Martin Stoltnow (

martin.stoltnow@siemens-healthineers.com) (rest of world)."

Common pitfalls and things to watch out for

Please note that the noise ceiling metrics provided with NSD assume that voxel-wise beta 

weights are z-scored within each session and then aggregated across sessions. Analyses 

that wish to use the noise ceiling metrics must mimic these operations. It is possible to 

apply the general theory of noise ceiling to the case where z-scoring is not performed, but 

this is up to the user and is not currently provided with NSD.

Some data files and/or results can involve NaN values (for example, NaN might indicate 

when data are missing), and this may cause problems with various software tools. When 

processing files, it is recommended to check for these cases and resolve them 

appropriately (e.g., possibly setting NaNs to 0).

In the nsd_mapdata utility (and associated transform files), the 'native surface' to 

'fsaverage' transform is accomplished using the arbitrary naming convention of 'lh.white' 

and 'rh.white', even though the concept of the fsaverage transform is not actually specific 

to any cortical depth (i.e. it would be equally applicable to the mid-gray or pial surfaces). 

Thus, do not let the naming convention cause any confusion. For example, using 

nsd_mapdata, it would be reasonable to map data from the 'func1pt0' space to 'lh.layerB2' 

(mid-gray surface), and then map from 'lh.white' (which is just the arbitrary naming 

convention for data on the subject's surface) to 'fsaverage'.

Note that no intensity normalization, detrending, or noise removal has been applied to the 

pre-processed fMRI time-series data that are provided with NSD. In particular, note that 

the mean signal intensity present at a given voxel may drift to some degree over the course 

of a run, and might be somewhat variable across runs and scan sessions. One should 

keep these observations in mind when designing an approach that starts with the time-

series data.

Some of the files that contain betas in percent signal change units are actually multiplied 

by 300 and stored as integer format (to save space), and thus need to be casted to 

mailto:yulin.chang@siemens-healthineers.com
mailto:martin.stoltnow@siemens-healthineers.com


decimal format and divided by 300 upon loading. Be careful.

The category-selective ROIs that are provided are intentionally defined with a liberal 

threshold (t > 0). This has the consequence that some ROIs may overlap with other ROIs 

(e.g., the floc-faces ROI collection may label some of the same voxels/vertices as the floc-

bodies ROI collection). If you require more stringent ROIs, you can further whittle them 

down based on the provided t-values and/or winner-take-all operations, etc.

In the floc experiment, the 'body' category is distinct from the 'bodies' domain. The latter 

pools over body the 'body' and 'limb' categories.

The MNI formatting conventions (especially regarding left vs. right) are tricky. Please see 

Technical notes⁠  for details.

If you plan to try to use the transform files provided with NSD, keep in mind that these files 

have very specific meanings and conventions, so do not necessarily assume that they will 

work "out of the box" with some specific software. If possible, we recommend using 

nsd_mapdata.

Note that the number of volumes in the pre-processed time-series data may be slightly 

larger than expected. This is correct behavior (some "excess" volumes are at the end) and 

has to do with how the pre-processing is performed. For example, the duration of the 

experiment conducted in each prf run is 300 s (or more precisely, 300 x 0.999878 s = 

299.9634 s). The TR is 1.6 s. We acquired 188 volumes for a given prf run. Notice that 

188 x 1.6 = 300.8 s, which therefore extends a little beyond the end of the actual 

experiment duration. In pre-processing for the standard resolution version, we resample to 

a rate of 4/3 s (or more precisely, 4/3 * 0.999878 = 1.33317 s). To ensure that we 

accommodate the full duration of the acquired data, the pre-processing is designed to 

produce 300.8/(1.33317) = 225.63 volumes. But of course, fractional volumes are non-

sensical; hence, what we actually do is to round up to produce 226 volumes. (Note that 

there is a little bit of extrapolation involved to compute the very final volume.) Thus, 226 

volumes is obtained in the pre-processing, even though there is a sense in which 225 

volumes should have been obtained (since 300 s / (4/3 s) = 225). Nonetheless, everything 

is correct, and you can simply strip the 226th volume from the end of the pre-processed 

data, and you can interpret the first 225 volumes as coinciding with, say, the prf stimulus 

design information that we have provided.

The flattened surfaces provided with NSD may have a rotation that may be unexpected in 

certain software packages. If that is the case, you may wish to read in the flattened 

https://slite.com/api/public/notes/h_T_2Djeid/redirect


surfaces (e.g. read_patch.m) and apply your own rotation to the vertices and then re-save 

the files.

NSD provides a manually flattened version of the fsaverage surface (?h.full.flat.patch.3d) 

that is distinct from the one that comes with FreeSurfer (?h.cortex.patch.flat). The former is 

a bit less jaggedy than the latter. Also, the same general cutting strategy used for the 

manually flattened fsaverage was used to generate the manually flattened version of each 

native-subject surface.


	General-Information
	NSD_Data_Manual_v1.3.pdf
	Terms-and-Conditions
	How-to-get-the-data
	Overview-of-the-data
	Experiments
	Raw-data
	Time-series-data
	Informational-files
	Data-inspections
	Behavioral-data
	Spaces-for-imaging-data
	Structural-data
	Functional-data-general
	Functional-data-pRF-fLoc
	Functional-data-NSD
	Functional-data-resting-state
	Diffusion-data
	ROIs
	Technical-notes
	Code
	Example-text-for-papers
	FAQ




