
General Information

News
2025/03/11 - The NSD synthetic data (one additional 7T fMRI scan session) have 

now been publicly released.

2024/04/02 - Take the NSD / large-scale neuroimaging dataset anonymous 

survey! Deadline May 15, 2024.

2023/11/22 - A minor error was discovered in the implemented transformation from 

anatomical to functional space for each given NSD subject (see  

for details). The error is very minor, and so we have not changed any data files.

2023/08/20 - All data and files associated with the last 3 NSD core scan sessions 

have now been publicly released.

2021/12/16 - The NSD data paper is now published in Nature Neuroscience.

2021/09/03 - The NSD dataset is now released, and version 1.1 of the NSD Data 

Manual is now complete. A video walkthrough of NSD data files is also now available 

(details below).

2021/02/15 - Version 1.0 of the NSD Data Manual is now complete.

Basic information
Welcome to the Natural Scenes Dataset (NSD) Data Manual. This web site provides a 

detailed, technical description of all NSD data files that are available. It will be updated as 

questions and issues arise. The information on this site is also available as a single 

downloadable PDF (last snapshot 2024/12/02 - version 1.5) (this may be convenient 

for performing "Find" queries).

If you want to browse or download the data, please see How to get the data .

The official paper that formally describes the NSD dataset is available as:

Allen, St-Yves, Wu, Breedlove, Prince, Dowdle, Nau, Caron, Pestilli, Charest, 

Hutchinson, Naselaris*, & Kay*. A massive 7T fMRI dataset to bridge cognitive 

neuroscience and artificial intelligence. Nature Neuroscience (2022). 

We refer to this as the "NSD data paper". The data paper has some associated online 

resources at the NSD OSF site. The contents of this data manual assume familiarity with 
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the data paper.

The official preprint/paper that formally describes the NSD synthetic experiment 

(additional data released after the main NSD experiment) is available as:

Gifford, Cichy, Naselaris, Kay. A 7T fMRI dataset of synthetic images for out-of-

distribution modeling of vision. arXiv (2025). 

We refer to this as the "NSD synthetic paper".

We have created a video walkthrough that gives an overview of the data files 

present in the NSD dataset.

Announcements and updates to the NSD dataset will be documented and logged on this 

page, so check back regularly.

If you have questions about the NSD dataset, please either (1) post your question to the 

nsd-users mailing list, (2) open an issue or discussion on the relevant github repository 

(e.g. http://github.com/cvnlab/nsdcode/ or 

http://github.com/cvnlab/nsddatapaper/), (3) send queries directly to 

kay@umn.edu, or (4) submit anonymous feedback/suggestions via this Google form. 

Please let us know if there is missing documentation or if something is not clear.

Change history
Substantive changes to NSD data files are documented and logged here:

2025/03/11 - Files related to the NSD synthetic experiment have now been publicly 

released.

2023/08/20 - The files related to the last 3 NSD core scan sessions from each 

subject are now publicly released.

2023/05/27 - The files related to the final memory test (nsdmemory) are now publicly 

released. See  and .

2022/08/15 - In nsddata/inspections/rois/prf-visualandecc/, a few visualizations were 

incorrect. Specifically, the files "subj02_prf-eccrois_on_eccentricity.png" and 

"subj02_prf-visualrois_on_angle.png" have now been corrected.

2022/01/26 - For user convenience, we now provide some additional versions of the 

nsddata/stimuli/prf stimulus files (description has been updated in ).

  Experiments   Behavioral data 
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2021/10/20 - Diffusion derivatives are now available (nsddata_diffusion/) and 

documented in the data manual (see ). Summary b=0 diffusion 

files (called nsddata/ppdata/subj*/anat/DWI_*.nii.gz) and associated 

nsddata/inspections/coregistration/*DWI* files have been created to help visualize 

the quality of the pre-processed diffusion data and their registration to the T1+T2 

anatomy. In addition, the "knowndataproblems.txt" file has been slightly 

updated/modified. 

2021/09/03 - Initial public release of the NSD dataset.

2021/09/02 - actually add split-half ncsnr (noise ceiling) files (this was for some 

reason not completed on the previous iteration on 2021/08/07)

2021/08/07 - add additional files pertaining to BOLDscreen calibration; add 

information on race to nsddemographics.xlsx; include Phase component of the SWI 

scans to the raw BIDS data; add split-half ncsnr (noise ceiling) files; add pre-

processed eyetracking data and inspection figures

2021/07/23 - design .tsv files for the nsdsynthetic experiment were incorrect; these 

have been fixed.

2021/05/16 - Added probmap .mgz files (see ROIs ) and associated .png 

surfacevisualizations (see Data inspections )

2020/12/20 - Official version 1.0 release of nsd_mapdata (in the nsdcode 

repository).

Community-driven content
If you have NSD-related information, tools, resources, tutorials, or links that you would 

like to share with the community, please contact kay@umn.edu and the information 

can be listed here.

nsdexamples (http://github.com/kendrickkay/nsdexamples). These example 

scripts, written by Kendrick Kay, were created to demonstrate some basic loading, 

analysis, and visualization of the NSD dataset.

nsd_access (https://github.com/tknapen/nsd_access). This toolbox, written by 

Tomas Knapen, provides a convenient Python-based interface to the NSD dataset. 

There are also some examples of how to load data and perform basic visualization. 

The toolbox also enables easy access to COCO image annotation information, 

including category labels and bounding boxes.  

Papers and pre-prints
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Here are links to papers that use NSD data. 

Fractional Ridge Regression: a Fast, Interpretable Reparameterization of 

Ridge Regression.  Rokem, A. & Kay, K.  GigaScience (2020). 

Extensive sampling for complete models of individual brains.  Naselaris, T., 

Allen, E., & Kay, K.  Current Opinion in Behavioral Sciences (2021). 

A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial 

intelligence.  Allen, St-Yves, Wu, Breedlove, Prince, Dowdle, Nau, Caron, Pestilli,

Charest, Hutchinson, Naselaris*, & Kay*.  Nature Neuroscience (2022). 

NeuroGen: activation optimized image synthesis for discovery 

neuroscience. Gu, Z., Jamison, K.W., Khosla, M., Allen, E.J., Wu, Y., Naselaris, T., 

Kay, K., Sabuncu, M.R., Kuceyeski, A. NeuroImage (2022). 

Non-Neural Factors Influencing BOLD Response Magnitudes within 

Individual Subjects. Kurzawski, J.W., Gulban, O.F., Jamison, K., Winawer, J.*, 

Kay, K.*  Journal of Neuroscience (2022). 

Improving the accuracy of single-trial fMRI response estimates using 

GLMsingle. Prince, J.S., Charest, I., Kurzawski, J.W., Pyles, J.A., Tarr, M.J., Kay, 

K.N.  eLife (2022). 

Personalized visual encoding model construction with small data. Zijin Gu, 

Keith Jamison, Mert Sabuncu, and Amy Kuceyeski Communications Biology 

(2022). 

Selectivity for food in human ventral visual cortex. Nidhi Jain, Aria Wang, 

Margaret M. Henderson, Ruogu Lin, Jacob S. Prince, Michael J. Tarr, and Leila 

Wehbe Communications Biology (2023). 

Short-term plasticity in the human visual thalamus. Jan W Kurzawski, Claudia 

Lunghi, Laura Biagi, Michela Tosetti, Maria Concetta Morrone, Paola Binda eLife 

(2022). 

Color-biased regions in the ventral visual pathway are food 

selective. Pennock, I.M.L., Racey, C., Allen, E.J., Wu, Y., Naselaris, T., Kay, K.N., 

Franklin, A., Bosten, J.M. Current Biology (2022). 

Multiple Traces and Altered Signal-to-Noise in Systems Consolidation: 

Complementary Evidence from the 7T fMRI Natural Scenes Dataset. Vanasse, 

T.J., Boly, M., Allen, E.J., Wu, Y., Naselaris, T., Kay, K., Cirelli, C., Tononi, G. PNAS 

(2022). 

The risk of bias in data denoising methods: examples from neuroimaging. Kay, 

K. PLoS One (2022). 
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A Highly Selective Response to Food in Human Visual Cortex Revealed by 

Hypothesis-Free Voxel Decomposition. Meenakshi Khosla, N. Apurva Ratan 

Murty, Nancy G Kanwisher Current Biology (2022). 

See commentary:

Visual cortex: Big data analysis uncovers food specificity. Michael M. 

Bannert and Andreas Bartels Current Biology (2022). 

Low-level tuning biases in higher visual cortex reflect the semantic 

informativeness of visual features. Margaret Henderson, Michael J. Tarr, Leila 

Wehbe Journal of Vision (2023). 

Re-expression of CA1 and entorhinal activity patterns preserves temporal 

context memory at long timescales. Futing Zou, Wanjia Guo, Emily J. Allen, 

Yihan Wu, Ian Charest, Thomas Naselaris, Kendrick Kay, Brice A. Kuhl, J. 

Benjamin Hutchinson, Sarah DuBrow Nature Communications (2023). 

A texture statistics encoding model reveals hierarchical feature selectivity 

across human visual cortex. Margaret M. Henderson, Michael J. Tarr, 

Leila Wehbe Journal of Neuroscience (2023). 

Natural scene sampling reveals reliable coarse-scale orientation tuning in 

human V1. Roth, Z.N., Kay, K.*, Merriam, E.P.* Nature Communications (2022). 

Representations in human primary visual cortex drift over time. Roth, 

Z.N., Merriam, E.P. Nature Communications (2023). 

Human brain responses are modulated when exposed to optimized natural 

images or synthetically generated images Zijin Gu, Keith Jamison, Mert R. 

Sabuncu, and Amy Kuceyeski Communications Biology (2023). 

Brain-optimized deep neural networks of human visual areas learn non-

hierarchical representations. St-Yves, G., Allen, E.J., Wu, Y., Kay, K.*, Naselaris, 

T.*  Nature Communications (2023). 

Natural scene reconstruction from fMRI signals using generative latent 

diffusion Furkan Ozcelik and Rufin VanRullen. Scientific Reports (2023). 

Better models of human high-level visual cortex emerge from natural 

language supervision with a large and diverse dataset. Wang, A.Y., Kay, K., 

Naselaris, T., Tarr, M.J., Wehbe, L. Nature Machine Intelligence (2023). 

Encoding of Visual Objects in the Human Medial Temporal Lobe Yue Wang, 

Runnan Cao and Shuo Wang Journal of Neuroscience (2024). 

Mind-bridge: reconstructing visual images based on diffusion model from 

human brain activity Qing Liu, Hongqing Zhu, Ning Chen, Bingcang Huang, 
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Weiping Lu & Ying Wang Signal, Image and Video Processing (2024) 

A unifying framework for functional organization in early and higher ventral 

visual cortex Eshed Margalit, Hyodong Lee, Dawn Finzi, James J. DiCarlo, 

Kalanit Grill-Spector, Daniel L.K. Yamins Neuron (2024). 

Natural scenes reveal diverse representations of 2D and 3D body pose in the 

human brain Hongru Zhu, Yijun Ge, Alexander Bratch, Alan Yuille, Kendrick Kay, 

Daniel Kersten PNAS (2024). 

Retrieving and reconstructing conceptually similar images from fMRI with 

latent diffusion models and a neuro-inspired brain decoding model Matteo 

Ferrante, Tommaso Boccato, Luca Passamonti, and Nicola Toschi Journal of 

Neural Engineering (2024). 

Large-scale parameters framework with large convolutional kernel for 

encoding visual fMRI activity information Shuxiao Ma, Linyuan Wang, Senbao 

Hou, Chi Zhang, Bin Yan Cerebral Cortex (2024). 

Primate brain: A unique connection between dorsal and ventral visual 

cortex Jason D. Yeatman Current Biology (2024). 

Frontostriatal salience network expansion in individuals in depression Charles 

J. Lynch, Immanuel G. Elbau, Tommy Ng, Aliza Ayaz, Shasha Zhu, Danielle 

Wolk, Nicola Manfredi, Megan Johnson, Megan Chang, Jolin Chou, Indira 

Summerville, Claire Ho, Maximilian Lueckel, Hussain Bukhari, Derrick 

Buchanan, Lindsay W. Victoria, Nili Solomonov, Eric Goldwaser, Stefano Moia, 

Cesar Caballero-Gaudes, Jonathan Downar, Fidel Vila-Rodriguez, Zafiris J. 

Daskalakis, Daniel M. Blumberger, Kendrick Kay, Amy Aloysi, Evan M. Gordon, 

Mahendra T. Bhati, Nolan Williams, Jonathan D. Power, Benjamin Zebley, Logan

Grosenick, Faith M. Gunning & Conor Liston Nature (2024). 

Contrastive learning explains the emergence and function of visual category-

selective regions  Jacob S. Prince, George A. Alvarez, and Talia Konkle  Science 

Advances (2024). 

A large-scale examination of inductive biases shaping high-level visual 

representation in brains and machines Colin Conwell, Jacob S. Prince, Kendrick

N. Kay, George A. Alvarez & Talia Konkle Nature Communications (2024). 

NeuralDiffuser: Neuroscience-inspired Diffusion Guidance for fMRI Visual 

Reconstruction Haoyu Li, Hao Wu, Badong Chen IEEE Transactions on Image 

Processing (2025). 

Unraveling the Differential Efficiency of Dorsal and Ventral Pathways in 

Visual Semantic Decoding Wei Huang, Ying Tang, Sizhuo Wang, Jingpeng Li, 
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Making Your Dreams A Reality: Decoding the Dreams into a Coherent Video 

Story from fMRI Signals Yanwei Fu, Jianxiong Gao, Baofeng Yang, Jianfeng 

Feng arXiv (2025). 

BOLDreams: Dreaming with pruned in-silico fMRI Encoding Models of the 

Visual Cortex Uzair Hussain, Kamil Uludag arXiv (2025). 

BRAINGUARD: Privacy-Preserving Multisubject Image Reconstructions from 

Brain Activities Zhibo Tian, Ruijie Quan, Fan Ma, Kun Zhan, Yi Yang arXiv 

(2025). 

TopoNets: High performing vision and language models with brain-like 

topography Mayukh Deb, Mainak Deb, N. Apurva Ratan Murty arXiv (2025).

Scaling laws for decoding images from brain activity Hubert Banville, Yohann 

Benchetrit, Stéphane d'Ascoli, Jérémy Rapin, Jean-Rémi King arXiv (2025). 

TROI: CROSS-SUBJECT PRETRAINING WITH SPARSE VOXEL SELECTION 

FOR ENHANCED FMRI VISUAL DECODING. Ziyu Wang, Tengyu Pan, Zhenyu 

Li, Jianyong Wang, Xiuxing Li, and Ji Wu. arXiv (2025). 

LaVCa: LLM-assisted Visual Cortex Captioning. Takuya Matsuyama, Shinji 

Nishimoto, Yu Takagi. arXiv (2025). 

Braintransformer: Subject-Wise Patch Embed Transformer for Cross-Subject 

Brain Visual Information Decoding. Du Zongxin, Li Lin. 2024 21st International 

Computer Conference on Wavelet Active Media Technology and Information 

Processing (ICCWAMTIP) 

Talking to the brain: Using Large Language Models as Proxies to Model Brain 

Semantic Representation. Xin Liu, Ziyue Zhang, Jingxin Nie. arXiv (2025). 

MindLLM: A Subject-Agnostic and Versatile Model for fMRI-to-Text 

Decoding. Weikang Qiu, Zheng Huang, Haoyu Hu, Aosong Feng, Yujun Yan, 

Rex Ying. arXiv (2025).  

BrainChat: Interactive Semantic Information Decoding from fMRI Using 

Large-Scale Vision-Language Pretrained Models. Wanqiu Huang, Ke Ma, 

Tingyu Xie, Hongwei Wang. ICASSP 2025 - 2025 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP) (2025). 

A 7T fMRI dataset of synthetic images for out-of-distribution modeling of 

vision. Alessandro T. Gifford, Radoslaw M. Cichy, Thomas Naselaris, Kendrick 

Kay. arXiv (2025). 
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Terms and Conditions
Before you download the NSD data, please read the data sharing and usage agreement 

below. You must agree to all terms and conditions before accessing the data.

Data Sharing and Usage Agreement
Before I download or process the NSD dataset, I agree to the following terms and 

conditions:

The Center for Magnetic Resonance Research (CMRR) grants me non-exclusive, 

royalty-free access to download and process this dataset.

1.

I will utilize this dataset only for research and educational purposes.2.

I will not distribute this dataset or its components to any other individual or entity.3.

I will require anyone on my team who utilizes these data to comply with this data use 

agreement.

4.

I will neither sell this dataset or its components nor monetize it.5.

I will comply with any rules and regulations imposed by my institution and its 

institutional review board in requesting these data.

6.

The NSD dataset is collected from human subjects and has been de-identified. I will 

not retrieve or try to retrieve protected health information (PHI) of the human subjects 

in this dataset. If I incidentally discover PHI information, I will immediately inform the 

principal investigator.

7.

I agree that all presentations and publications resulting from any use of this dataset 

must cite the relevant work using the suggested citation format listed below.

8.

CMRR specifically disclaims any warranties including, but not limited to, the implied 

warranties of merchantability and fitness for a particular purpose. The dataset and 

the encompassing software provided hereunder is on an “as is” basis, and CMRR 

has no obligation to provide maintenance, support, updates, enhancements, or 

modifications.

9.

In no event shall CMRR be liable to any party for direct, indirect, special, incidental, 

or consequential damages arising out of the use of this dataset and the 

accompanying software, even if CMRR has been advised of the possibility of such 

damage.

10.

In addition to the above-listed terms and conditions, I will also comply with federal, 

state, local, and institutional policies and regulations.

11.



Citation Format
If you make use of the NSD dataset, please cite the NSD data paper:

Allen, St-Yves, Wu, Breedlove, Prince, Dowdle, Nau, Caron, Pestilli, Charest, 

Hutchinson, Naselaris*, & Kay*. A massive 7T fMRI dataset to bridge cognitive 

neuroscience and artificial intelligence. Nature Neuroscience (2021). 

If you make use of the NSD synthetic data, please also cite the NSD synthetic paper:

Gifford, Cichy, Naselaris, Kay. A 7T fMRI dataset of synthetic images for out-of-

distribution modeling of vision. arXiv (2025). 

In addition, please acknowledge the NSD funding sources using wording similar to:

"Collection of the NSD dataset was supported by NSF IIS-1822683 and NSF IIS-

1822929."

https://doi.org/10.1038/s41593-021-00962-x
https://doi.org/10.1038/s41593-021-00962-x
https://doi.org/10.1038/s41593-021-00962-x
https://arxiv.org/abs/2503.06286
https://arxiv.org/abs/2503.06286


How to get the data
Before accessing the data, you must agree to the Terms and Conditions  and fill out 

the NSD Data Access form. After doing so, you are granted full access to the NSD 

dataset.

AWS
The NSD data are available for download via Amazon Web Services (AWS)'s Simple 

Storage Service (S3). Thanks to the Public Dataset Program, access to files (request, 

egress, and transfer costs) is free of charge.

There are several ways to access the data:

For a light-weight experience (no AWS account necessary), you can directly browse 

the NSD data files via a simple web interface at https://natural-scenes-

dataset.s3.amazonaws.com/index.html

Alternatively, you can use AWS and browse the NSD data files at 

https://s3.console.aws.amazon.com/s3/buckets/natural-scenes-dataset

Note that you can directly download individual files from AWS via a URL, like: 

https://natural-scenes-dataset.s3-us-east-

2.amazonaws.com/nsddata/experiments/nsd/nsd_screencapture.mp4

You can use a graphical S3 client (e.g. Cyberduck) to browse and download the 

data. If using a client, connect to natural-scenes-dataset.s3-us-east-

2.amazonaws.com. (Note that in order to connect, you have to supply an access key 

ID and secret that is associated with your own personal AWS account.) 

For large-scale data downloading, the best bet is probably to use the AWS CLI 

(command-line interface) which is "rsync"-like.

Note that as an alternative to downloading the data and analyzing on local machines, 

AWS also provides access to cloud computing resources in the form of EC2 instances.

For your convenience, here is a text listing of all files in the AWS bucket (natural-

scenes-dataset).

AWS CLI

https://slite.com/api/public/notes/IB6BSeW_7o/redirect
https://slite.com/api/public/notes/IB6BSeW_7o/redirect
https://slite.com/api/public/notes/IB6BSeW_7o/redirect
https://forms.gle/xue2bCdM9LaFNMeb7
https://aws.amazon.com/opendata/public-datasets/
https://natural-scenes-dataset.s3.amazonaws.com/index.html
https://natural-scenes-dataset.s3.amazonaws.com/index.html
https://s3.console.aws.amazon.com/s3/buckets/natural-scenes-dataset
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/nsd/nsd_screencapture.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/nsd/nsd_screencapture.mp4
http://natural-scenes-dataset.s3-us-east-2.amazonaws.com/
http://natural-scenes-dataset.s3-us-east-2.amazonaws.com/
http://naturalscenesdataset.org/fulllisting202109021229.txt
http://naturalscenesdataset.org/fulllisting202109021229.txt


The AWS CLI provides convenient programmatic access to the data.

Consider the following example:

aws s3 ls s3://natural-scenes-dataset  

This command simply lists the buckets (folders) available.

As another example:

aws s3 cp s3://natural-scenes-

dataset/nsddata/experiments/nsd/nsd_screencapture.mp4 

/path/to/local/dir/

This command downloads the .mp4 file and places it inside the local directory "dir".

As another example:

aws s3 sync --dryrun s3://natural-scenes-dataset/nsddata_betas 

/path/to/local/nsddata_betas --exclude "*func1mm*" --exclude 

"*MNI*" --exclude "*betas_assumehrf*" --exclude 

"*betas_fithrf_GLMdenoise_RR*" --exclude "*betas*session*nii.gz"  

This command synchronizes the "nsddata_betas" directory from the server to the local 

"nsddata_betas" directory (located under /path/to/local/). Note that we include the --

dryrun flag for cautionary purposes; you should remove the --dryrun flag once you are 

ready to actually perform the download. Also, note that the command includes several --

exclude flags in order to reduce the amount of data downloaded. Specifically, the 

command excludes the 1-mm preparation of the functional data, the MNI version of the 

data, beta version 1 ("betas_assumehrf") and beta version 3 

("betas_fithrf_GLMdenoise_RR"), and the NIFTI version of the very large beta files.

As another example:

aws s3 sync --dryrun --exclude "*" --include "*eyedata*" 

s3://natural-scenes-dataset/nsddata_timeseries 

/path/to/local/nsddata_timeseries

This command synchronizes the "nsddata_timeseries" directory, excluding ALL files 

except for the "eyedata" files (using a wildcard mechanism). Remove the --dryrun flag if 

all looks good.

https://aws.amazon.com/cli/


The AWS CLI includes many customizable flags. Some flags that may be useful include --

size-only, --exact-timestamps, and --delete.



Overview of the data

Top-level directories
There are several top-level directories:

nsddata (~49 GB) - This is the main directory containing essential data files, 

including (but not limited to) anatomical data, results of the prf and floc experiments, 

behavioral data, FreeSurfer subject directories, and ROIs.

nsddata_betas (~8.3 TB) - This very large folder contains estimated fMRI single-

trial responses ("betas") for the NSD experiment as well as associated results (e.g. 

noise ceiling estimates). There are multiple versions of the betas (e.g., 

betas_assumehrf (b1), betas_fithrf (b2), betas_fithrf_GLMdenoise_RR (b3)). Also, 

betas are prepared and available in different spaces (e.g., 1.8-mm volume 

(func1pt8mm), 1-mm volume (func1mm), subject-native surface (nativesurface), 

fsaverage, MNI).

nsddata_stimuli (~40 GB) - This contains the color natural scene images used in 

the NSD experiment.

nsddata_timeseries (~3.4 TB) - This very large folder contains the pre-processed 

fMRI time-series data from which the single-trial betas are estimated. Both 1.8-mm 

and 1-mm versions are available. In addition, this folder contains information 

associated with the time-series data, including physiological data (pulse and 

respiratory), experimental design information (i.e. which images were shown when), 

motion parameter estimates from the pre-processing of the fMRI data, and 

eyetracking data.

Data listing from Amazon S3



nsddata_other (~25 GB) - This contains miscellaneous items, including (but not 

limited to) materials used to run the experiments and original unedited FreeSurfer 

outputs.

nsddata_diffusion (~200 GB) - This contains derivatives from analyzing the 

diffusion data. NOTE: We are currently preparing the final versions of the diffusion 

derivative files, and they will be made available within a few weeks.

nsddata_rawdata (~946 GB) - This contains raw data in BIDS format.

The NSD dataset is very large in size. Depending on your needs, you may not need all of 

the files. For example, if you wish to work from the single-trial betas that we have 

provided, there is no need to download the raw data nor the pre-processed time-series 

data. As another example, if you want only the standard-resolution (1.8-mm) preparation 

of the data, you can exclude the high-resolution (1-mm) preparation, which will result in 

major space savings (requirement of ~6 times less space). As a third example, if you 

want only beta version b3, there is no need to also download beta versions b1 and b2.

Held-out data
Some data collected as part of the NSD effort are not yet publicly available. These 

include the following:

nsdimagery (1 scan session) - Data related to the nsdimagery 7T fMRI experiment 

are not yet available. These data will be described and released as part of a separate

paper effort.

nsdsynthetic (1 scan session) - Data related to the nsdsynthetic 7T fMRI 

experiment are not yet available. These data will be described and released as part 

of a separate paper effort. The data are now released (March 11 2025).

Last 3 NSD core sessions - Due to the involvement of the NSD data in the 

Algonauts prediction challenge, the last 3 NSD core scan sessions from each of the 

8 NSD subjects are being temporarily held out from public release. The held-out data 

will be released at a future date. The data are now released (Aug 20 2023).

nsdmemory (behavioral experiment) - Data from the final memory test conducted 

after completion of the NSD fMRI experiment are now available (released May 27 

2023).

For the scan sessions mentioned above, the raw and pre-processed data are held out. 

However, the behavioral data and experimental design information (including the actual 

https://cvnlab.slite.com/app/channels/CT9Fwl4_hc/notes/algonauts.csail.mit.edu/


stimuli shown) for the held-out scan sessions are still available. Note that the held-out 

scan sessions may include instances of images whose responses are available in some 

other scan session either from that subject or from other subjects.



Experiments
This section covers the various experiments conducted for the NSD dataset. This 

includes details on stimuli and experimental design (e.g. the order in which stimuli were 

presented).

Acquisition-related information
 

nsddata/experiments/scanningprotocols/3TB_cvnlab_standardcoil_structural0p

t8mm.pdf 

 

This is a PDF report of the acquisition protocol for data collected at 3T. (Note: The 

diffusion scans are named dir98 and dir99, whereas the actually acquired data 

contain 99 and 100 volumes, respectively. This is because there is an additional b=0 

volume at the beginning. Also, note that the actual b-values recorded in the .bval files 

deviate slightly from the "dialed-in" values of 0, 1500, and 3000.)

 

nsddata/experiments/scanningprotocols/7TPS_cvnlab_nova1x32_bold1pt8mm.

pdf 

 

This is a PDF report of the acquisition protocol for data collected at 7T.

nsddata/experiments/boldscreen/

This contains code, data, and figures illustrating the spectral power density 

measurement of the BOLDscreen 32 LCD monitor. 

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/scanningprotocols/3TB_cvnlab_standardcoil_structural0pt8mm.pdf
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/scanningprotocols/3TB_cvnlab_standardcoil_structural0pt8mm.pdf
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/scanningprotocols/7TPS_cvnlab_nova1x32_bold1pt8mm.pdf
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/scanningprotocols/7TPS_cvnlab_nova1x32_bold1pt8mm.pdf


Information regarding the prf experiment
 

nsddata/experiments/prf/prf_screencapture.mp4 

 

This movie is a screen capture of an example segment of the prf experiment.

boldscreen/boldscreen_spdmeasurement.p

boldscreen/boldscreen_calibration.png 

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/prf/prf_screencapture.mp4


nsddata/stimuli/prf/RETBAR*

These are sequences of "aperture masks" that correspond to the multibar runs in the 

prf experiment. The files with "small" in the filename are resized versions of the 

masks. These resized versions have the aperture masks averaged across 

consecutive 1-s chunks of the spatiotemporal stimulus, with the exception of the file 

with "4div3" in the filename, which has been averaged across successive 4/3-s 

chunks. These aperture masks were used in analyzing the fMRI data from the prf 

experiment (1-s for the high-resolution preparation; 4/3-s for the standard-resolution 

preparation). The files without "small" in the filename are the original (unresized and 

unaveraged) versions of the masks — these masks update at a rate of 15 frames per 

second. Note that we provide .mp4 versions for convenience; however, the .mp4 files 

have some (very slight) compression artifacts in them, so be wary when using these 

files for actual analysis.

nsddata/stimuli/prf/RETWEDGERINGMASH*

Same information as RETBAR* except corresponding to the wedgering runs in the 

prf experiment.

Information regarding the floc experiment
 

nsddata/experiments/floc/floc_screencapture.mp4 

 

This movie is a screen capture of an example segment of the floc experiment.

screenshot from prf experiment

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/floc/floc_screencapture.mp4


nsddata/experiments/floc/categories.tsv 

 

Names of the 10 categories used in the floc experiment. The order corresponds to 

the order in the analysis results.

 

nsddata/experiments/floc/domains.tsv 

 

Names of the 5 domains used in the floc experiment. The domains are in order and 

have a 1-to-2 relationship to the categories. For example, the first domain consists of 

the first two categories, the second domain consists of the third and fourth 

categories, and so on.

Information regarding the resting-state 
experiment

nsddata/experiments/resting/resting_screencapture.mp4

 

This movie is a screen capture of the beginning of the resting-state experiment (type 

2, instructed-breath). Notice that after 12 seconds, the cross turns red, which 

instructs the subject to take a deep breath.

screenshot from floc experiment

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/floc/categories.tsv
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/floc/domains.tsv


Information regarding the NSD experiment
 

The 73,000 images used in the NSD experiment are a subset of the COCO images, 

specifically the 2017 train/val split (see http://cocodataset.org for details). NSD images 

were selected from the COCO database such that all of the NSD images have “stuff”, 

“panoptic”, and “coco” annotations. In addition, since the NSD experiment involved 

square stimulus presentation, we cropped COCO images using a specific method that 

attempted to minimize loss of semantic information in the images (details provided here: 

Experiments ).

 

COCO annotations can be accessed on the COCO web site. The following Python 

notebook is helpful for getting started:

  

https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoDemo.ipy

nb 

 

nsddata/experiments/nsd/nsd_stim_info_merged.csv

 

This is a comma-separated text file that contains information related to the selection 

and preparation of the NSD images. After a header row, what follows is one row for 

each of the 73,000 images used in the NSD experiment.

 

Column 1 is the 0-based image number (0-72999).

Column 2 (cocoId) is the ID number assigned to this image in the COCO 

database.

screenshot from resting-

http://cocodataset.org/
https://slite.com/api/public/notes/NKalgWd__F/redirect
https://slite.com/api/public/notes/NKalgWd__F/redirect
https://slite.com/api/public/notes/NKalgWd__F/redirect
https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoDemo.ipynb
https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoDemo.ipynb


Column 3 (cocoSplit) is either “train2017” or “val2017”. The COCO web site 

designates different splits of images into training and validation sets. The NSD 

experiment does not involve any use of this designation (such as in the 

experimental design), but we provide this information just in case it is useful.

Column 4 (cropBox) is a tuple of four numbers indicating how the original COCO 

image was cropped. The format is (top, bottom, left, right) in fractions of image 

size. Notice that cropping was always performed along only the largest 

dimension. Thus, there are always two 0’s in the cropBox.

Column 5 (loss) is the object-loss score after cropping. See manuscript for more 

details, as well as the "Details on crop selection for COCO images" section 

below.

Column 6 (nsdId) is the 0-based index of the image into the full set of 73k 

images used in the NSD experiment. Values are the same as column 1. (Note 

that in some other cases, 73k IDs are specified as 1-based. Here the IDs are 

specified as 0-based.)

Column 7 (flagged) is True if the image has questionable content (e.g. violent or 

salacious content).

Column 8 (BOLD5000) is True if the image is included in the BOLD5000 dataset 

(http://bold5000.github.io). Note that NSD images are square-cropped, so the

images are not quite identical across the two datasets.

Column 9 (shared1000) is True if the image is one of the special 1,000 images 

that are shown to all 8 subjects in the NSD experiment.

Columns 10-17 (subjectX) is 0 or 1 indicating whether that image was shown to 

subjectX (X ranges from 1-8).

Columns 18-41 (subjectX_repN) is 0 indicating that the image was not shown to 

subjectX, or a positive integer T indicating that the image was shown to subjectX 

on repetitionN (X ranges from 1-8; N ranges from 0-2 for a total of 3 trials). T 

provides the trialID associated with the image showing. The trialID is a 1-based 

index from 1 to 30000 corresponding to the chronological order of all 30,000 

stimulus trials that a subject encounters over the course of the NSD experiment. 

Each of the 73k NSD images either has 3 trialIDs (if it was shown to only one 

subject) or 24 trialIDs (if it was shown to all 8 subjects).

 

nsddata/experiments/nsd/nsd_stim_info_merged.pkl

 

http://bold5000.github.io/


This contains the same information as the nsd_stim_info_merged.csv file, but is in 

Python-readable pickle file format (use pandas to read).

 

nsddata/experiments/nsd/nsd_screencapture.mp4 

 

This movie is a screen capture of one entire run of the nsd experiment.

nsddata/experiments/nsd/nsd_expdesign.mat

 

Contents:

<masterordering> is 1 x 30000 with the sequence of trials (indices relative to 

10k)

<basiccnt> is 3 x 40 where we calculate, for each scan session separately, the 

number of distinct images in that session that have a number of presentations 

equal to the row index.

<sharedix> is 1 x 1000 with sorted indices of the shared images (relative to 73k)

<subjectim> is 8 x 10000 with indices of images (relative to 73k). the first 1000 

are the common shared 1000 images. it turns out that the indices for these 1000 

are in sorted order. this is for simplicity, and there is no significance to the order 

(since the order in which the 1000 images are shown is randomly determined). 

the remaining 9000 for each subject are in a randomized non-sorted order.

<stimpattern> is 40 sessions x 12 runs x 75 trials. elements are 0/1 indicating 

when stimulus trials actually occur. note that the same <stimpattern> is used for 

all subjects.

 

screenshot from nsd experiment

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/nsd/nsd_screencapture.mp4


Note: subjectim(:,masterordering) is 8 x 30000 indicating the temporal sequence of 

73k-ids shown to each subject. This sequence refers only to the stimulus trials 

(ignoring the blank trials and the rest periods at the beginning and end of each run).

 

Note: All of these indices (in the nsd_expdesign.mat file) are 1-based indices.

nsddata_stimuli/stimuli/nsd/nsd_stimuli.hdf5

 

This is a single .hdf5 file that contains all images used in the nsd experiment across 

all subjects. <imgBrick> is 3 channels x 425 pixels x 425 pixels x 73,000 images and 

is in uint8 format. These images are shown on a gray background with RGB value 

(127,127,127).

 

The images in the .hdf5 file constitute the official list of the 73k images. When we use 

the term ‘73k-ID’, this refers to an index into this list of 73k images (1-indexed).

 

There is a special common set of 1,000 images, which are a subset of the 73k. Each 

of the eight subjects sees the shared 1,000 images, as well as 9,000 unique images 

(with the caveat that some subjects did not complete all 40 NSD scan sessions).

 

Here is an example of how to use MATLAB to quickly load in the 10239th image.

im = permute(h5read('nsd_stimuli.hdf5','/imgBrick',[1 1 1 

10239],[3 425 425 1]),[3 2 1]);

 

nsddata/stimuli/nsd/shared1000/

 

In this folder, there are 1,000 standard RGB .png files (uint8, 425 pixels x 425 pixels 

x 3 channels). Each file is named "sharedAAAA_nsdBBBBB.png" where AAAA 

ranges from 1 through 1000 and BBBBB indicates the 73k-ID (1-indexed). These are 

the 1,000 shared images common to all subjects. Note that the 73k-IDs are in sorted 

order.

 

nsddata/stimuli/nsd/special100/

 

This folder contains a subset of the files in the “shared1000” folder. Of the shared 

1,000 images, there is a subset of 515 images that all 8 subjects saw for all 3 trials. 



From these 515 images, we chose a subset of size 100 in order to maximally span 

semantic space. These specially chosen 100 images are contained in this folder. 

These 100 images were used in the nsdmeadows experiment and in the nsdmemory 

experiment.

 

nsddata/stimuli/nsd/special3/

 

This folder contains a subset of the files in the “shared1000” folder. The 

valence/arousal component of the nsdmeadows experiment involved the special100 

images as well as 3 additional images pulled from the subset of 515 images (as 

described above). These 3 additional images were selected on the criterion of having 

strong negative valence.

 

nsddata/stimuli/nsd/shared1000.mp4 

 

A movie that rapidly shows the shared 1,000 images.

 

nsddata/stimuli/nsd/shared1000.tsv 

nsddata/stimuli/nsd/special100.tsv 

nsddata/stimuli/nsd/special3.tsv 

nsddata/stimuli/nsd/notshown.tsv 

Simple text files that contain the 73k IDs (1-indexed) that comprise the various sets 

of images. The "notshown" file indicates 73k IDs of images that were not shown to 

any NSD subject (due to the fact that not all 8 subjects completed all prescribed 

sessions).

Details on performance bonuses provided during 
NSD data acquisition

In each scan session from nsd11–20, the subject earned up to $15 extra bonus. The 

bonus consisted of $3 for achieving better than the mean performance attained by that 

subject in sessions nsd01–10 with respect to four metrics. These metrics included the 

general BOLD quality metric, the intentionally vague “performance metric” (which was 

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/stimuli/nsd/shared1000.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/stimuli/nsd/shared1000.tsv
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/stimuli/nsd/special100.tsv
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/stimuli/nsd/special3.tsv
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/stimuli/nsd/notshown.tsv


actually the performance on easy trials), raw motion, and detrended motion (as described 

in the NSD data paper). The subject also received $3 for achieving a response rate 

higher than 99%.

In each scan session from nsd21–30, the subject earned up to $25 extra bonus. The 

bonus consisted of $5 for agreeing to participate in the resting-state runs conducted in 

those sessions, $5 if the physiological recordings maintained stability throughout the 

session, $5 for staying awake and fixated during each resting-state run (thus, $10 in total 

was possible), and $5 for achieving the “performance metric” above the mean observed 

for that subject in sessions nsd01–20.

In each scan session from nsd31–40, the subject earned up to $35 extra bonus. The 

bonus consisted of $20 for participating in that scan session, $5 for achieving response 

rate higher than 99%, and $10 for agreeing to participate in 1–2 additional miscellaneous 

scanning runs unrelated to NSD.

Information regarding the nsdpostbehavior 
experiments

nsddata/experiments/csf/csf_screencapture.png

 

This screenshot shows how contrast sensitivity functions were quickly measured.

nsddata/experiments/flicker/flicker_screencapture1.mp4 

nsddata/experiments/flicker/flicker_screencapture2.mp4 

 

These video captures give a sense of the experiment that assessed the chromatic 

sensitivity of each subject.

csf_screencapture.png

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/flicker/flicker_screencapture1.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/flicker/flicker_screencapture2.mp4


Information regarding the nsdmemory 
experiment
The experiment presentation code is available at https://github.com/hulacon/nsd-

memory

Custom code to analyze the data is available 

at https://github.com/futingzou/nsdFinalMem 

nsddata/experiments/nsdmemory/nsdmemory_screencapture.mp4 

This video capture shows what the nsdmemory experiment is like.

Information regarding the nsdmeadows 
experiment

screenshot from flicker 

Screenshot from nsdmemory experiment

https://github.com/hulacon/nsd-memory
https://github.com/hulacon/nsd-memory
https://github.com/futingzou/nsdFinalMem
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/nsdmemory/nsdmemory_screencapture.mp4


nsddata/experiments/meadows/meadows_screencapture.mp4 

 

This movie shows an example of what subjects experienced during the nsdmeadows 

experiment which was conducted using the web-based Meadows platform.

Information regarding the nsdsynthetic 
experiment

nsddata/experiments/nsdsynthetic/nsdsynthetic_screencapture.mp4 

This movie is a screen capture of an example run of the nsdsynthetic experiment.

screenshot from meadows experiment

screenshot from nsdsynthetic experiment

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/meadows/meadows_screencapture.mp4
http://meadows-research.com/
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/nsdsynthetic/nsdsynthetic_screencapture.mp4


Presentation files for experiments

nsddata_other/experimentcode/

This directory is an archive of materials used to conduct the various experiments in 

the NSD dataset.

Details on crop selection for COCO images

To select the optimal cropping box for each image, we computed an “object loss” score 

for each crop. Object loss was defined as the fraction of objects that are cropped by more 

than 50% of their total pixel count. We used only “thing” annotations to compute object 

loss. We did not use “stuff” annotations because these are often large and redundant, so 

that severely cropping them can often result in large object-loss scores but very little 

change to the semantic content of the image. When calculating object loss we did not 

include “things” that occupied less than 0.5% of the total pixels in the image. Finally, we 

imposed a bias toward center crops, selecting left, right, top, or bottom crops if object 

loss of the center crop exceeded the object loss of the left/right or top/bottom crops by 

more than 25%. For portrait-oriented images containing people, we always used the top 

crop, as these images almost always depicted human faces in the upper third of the 

image.

We examined all cropped images in the “val” portion of the train/val split and rejected any 

image, regardless of object loss score, for which cropping caused obvious “semantic 

loss”. 

 

When examining the “val” images we observed the relationship between object loss and 

semantic loss, and noted several trends that guided our selection/rejection of “train” 

images.

 

First, we found that for landscape-oriented images an object-loss score of 0.0 was a 

reliable indication of negligible “semantic loss”. Thus, we automatically accepted all 

landscape-oriented images in the “train” set with an object-loss score of 0.0.

 



Second, we found that for landscape-oriented images crops resulting in 0.0 < object loss 

< 0.2 occasionally, but not often, induced appreciable semantic loss. Semantic loss 

occurred when small but key peripheral objects (i.e., a soccer ball) were cropped. We 

also noted that when images depicted a small number of salient objects, such as people, 

captions often indicated number of the objects (e.g., “four people sitting around a table”). 

In these cases crops sometimes made the picture inconsistent with the quantities stated 

in the captions. Thus we screened all landscape-oriented images in the training set with 

0.0 < object-loss < 0.2 for special cases such as these, comparing images to their written 

captions where necessary.

 

Third, we found that for portrait-oriented images crops resulting in object loss = 0.0 

occasionally, but not often, induced appreciable semantic loss. These images tended to 

contain a small number of objects with two distinct kinds of terrain in the bottom (e.g., 

sand, floor) and top (e.g., sky, ceiling) of the image. Cropping the bottom terrain often 

decontextualized images, for example by reducing “person running on a beach” to 

“person running”. Many portrait-oriented images depicted tall buildings towering over a 

semantically meaningful scene such as a flea-market or a street parade. Thus, we 

screened all portrait-oriented images in the “train” set with object-loss = 0.0 for special 

cases such as these, comparing images to their written captions where necessary.

After screening the “train” and “val” images, the 73,000 images selected for NSD had a 

maximum object loss of 0.167 and a median of 0.08. 



Raw data
The NSD dataset can be conceptually divided into raw data (i.e. data with little or no 

additional processing) and prepared data (i.e. transformations of the raw data that have 

been performed in order to make the data more accessible and more convenient to use). 

The pre-processing methods that we used to create the prepared data are formally 

described in the NSD data paper, with technical details documented in this NSD Data 

Manual. Most of the remainder of the data manual after this page is specific to the 

prepared data and not the raw data. Note that a few of the scan sessions are currently 

held out from the public release (i.e. the raw data for this sessions are listable but not 

downloadable); see Overview of the data  for more information.

nsddata_rawdata/

This contains the raw data that were collected as part of the NSD effort. It is 

organized in BIDS format. Note that the data contained here are primarily the 

structural, functional, and diffusion MRI scans. Some of what might be considered 

raw data are contained elsewhere in the NSD directory structure. For example, 

various behavioral measures (see Behavioral data ) are provided in nsddata; 

stimulus images and experimental information are provided in nsddata_stimuli and 

nsddata (see Experiments ); and raw eyetracking data are provided in 

nsddata_timeseries (see Time-series data ).

Note that the content of the .tsv files with task information for the main NSD experiment 

essentially mirrors the contents of the "responses.tsv" file (as described in 

), so there is some redudancy.

Naming of the different "tasks" in the raw BIDS 
data:

The main NSD experiment is like "task-nsdcore_run-NN" where NN ranges from 01 

to 12. The resting-state experiment is like "task-rest_run-N" where N ranges from 1 

to 2. In the scan sessions involving resting-state, the chronological acquisition order 

was:

rest1

nsd01

  Behavioral 

data 

https://slite.com/api/public/notes/AGEte5w9Nq/redirect
https://slite.com/api/public/notes/AGEte5w9Nq/redirect
https://slite.com/api/public/notes/AGEte5w9Nq/redirect
https://slite.com/api/public/notes/fRv4lz5V2F/redirect
https://slite.com/api/public/notes/fRv4lz5V2F/redirect
https://slite.com/api/public/notes/fRv4lz5V2F/redirect
https://slite.com/api/public/notes/NKalgWd__F/redirect
https://slite.com/api/public/notes/NKalgWd__F/redirect
https://slite.com/api/public/notes/NKalgWd__F/redirect
https://slite.com/api/public/notes/vjWTghPTb3/redirect
https://slite.com/api/public/notes/vjWTghPTb3/redirect
https://slite.com/api/public/notes/vjWTghPTb3/redirect
https://slite.com/api/public/notes/fRv4lz5V2F/redirect
https://slite.com/api/public/notes/fRv4lz5V2F/redirect
https://slite.com/api/public/notes/fRv4lz5V2F/redirect
https://slite.com/api/public/notes/fRv4lz5V2F/redirect


nsd02

nsd03

nsd04

nsd05

nsd06

nsd07

nsd08

nsd09

nsd10

nsd11

nsd12

rest2

The prf experiment is like "task-prfbar_runNN" where NN ranges from 01 to 03 and 

"task-prfwedge_runNN" where NN ranges from 01 to 03. The floc experiment is like 

"task-floc_runNN" where NN ranges from 01 to 06. The chronological acquisition 

order in the prffloc scan session was:

prfbar01

prfwedge01

floc01

floc02

prfbar02

prfwedge02

floc03

floc04

prfbar03

prfwedge03

floc05

floc06

The nsdsynthetic experiment is like "task-fixation_runNN" where NN ranges from 01 

to 04 and "task-memory_runNN" where NN ranges from 01 to 04. Note the fixation 

and memory were interleaved and acquired in the following chronological order:

fixation01

memory01



fixation02

memory02

fixation03

memory03

fixation04

memory04

The nsdimagery experiment is like "task-vis[A-C]", "task-att[A-C]", and "task-img[A-

C]_runNN" where NN ranges from 01 to 02. The chronological order was:

visA

attA

imgA01

visB

attB

imgB01

visC

attC

imgC01

imgA02

imgB02

imgC02



Time-series data
This section covers pre-processed fMRI time-series data and other measures that exist 

at the level of the time-series data, which include motion parameter estimates, design 

matrix information (i.e. which stimulus was shown when), physiological data, and 

eyetracking data.

Pre-processing of the functional data involved two operations. First, a temporal 

resampling was performed using a cubic interpolation. The time-series for each voxel 

was upsampled to either 1 s (high-resolution version) or 1.333 s (standard-resolution 

version) and in doing so, slice-time differences were corrected. Note that the first time 

point (after pre-processing) is coincident with the start of the acquisition of the very first 

volume (i.e. the time of the first RF pulse). Second, a spatial resampling was performed 

using a cubic interpolation. Each volume was sampled at either 1 mm (high-resolution 

version) or 1.8 mm (standard-resolution version). This operation corrects for head motion,

EPI distortion, gradient nonlinearities, and across-scan-session alignment. Note that no 

high-pass filtering, nuisance regression, nor units conversion are performed for the pre-

processed functional data.

Pre-processed time-series data
 

nsddata_timeseries/ppdata/subjAA/func*/timeseries/timeseries_BB_runCC.nii.

gz

 

These are the pre-processed fMRI volumes. The only processing that has been 

performed for these data is a temporal resampling and a spatial resampling. To save 

space, a liberal brain mask has been used to zero-out the data for non-brain voxels 

(same mask for all data from a given subject). "BB" is either prffloc (referring to the 

scan session in which the prf and floc experiments were conducted) or sessionNN 

(where NN is the number of the core NSD scan session). Note that scan sessions 

involving resting-state acquisition consist of 14 runs (as opposed to the typical 12 

runs), so in these cases CC ranges from 01 to 14.

 

For the high-resolution (1-mm) preparation, the data are sampled at 1-s and contain 

301 volumes in each run (for the core NSD experiment). For the standard-resolution 



(1.8-mm) preparation, the data are sampled at 1.333-s and contain 226 volumes in 

each run (for the core NSD experiment). In both cases, the time associated with the 

first volume corresponds to the start of the acquisition of the first volume (first RF 

pulse).

For the prffloc scan session, there are 12 runs in the following order: prfbar, 

prfwedge, floc, floc, prfbar, prfwedge, floc, floc, prfbar, prfwedge, floc, floc.

Motion parameter estimates

nsddata_timeseries/ppdata/subjAA/func*/motion/motion_BB_runCC.tsv

 

Motion parameter estimates (SPM style). These reflect rigid-body transformations 

that indicate how each given fMRI volume is aligned to the reference fMRI volume 

(which is taken to be the first volume acquired in each scan session).

Note that each fMRI volume is spatially undistorted before estimating the rigid-body 

motion. Also, note that the motion parameter estimation is done with the first volume 

as the reference. However, the full pre-processing involves also estimating an affine 

transformation that aligns the data from each given scan session to the master space 

defined for each subject; this affine transformation is concatenated with the rigid-

body transformations in order to generate the final pre-processed fMRI data.

In the .tsv files, the first 3 columns correspond to translation parameters (mm) and 

the second 3 columns correspond to rotation parameters (radians). The number of 

rows matches the number of volumes in the pre-processed time-series data. Positive 

on the first column means the brain is displaced towards the posterior direction; 

positive on the second column means the brain is displaced towards the subject’s 

right; positive on the third column means the brain is displaced towards the inferior 

direction; positive on the fourth column (roll) means the head is twisted such that the 

nose is fixed and the top of the head goes towards the subject’s right; positive on the 

fifth column (pitch) means the ears are fixed and the head nods up; positive on the 

sixth column (yaw) means the top of the head is fixed and the head twists such that 

the nose goes to the subject’s left. 



Design matrix information

Below, we document design matrix files for the NSD, floc, and NSDsynthetic 

experiments. Note that the pre-preprocessed fMRI data (and motion files) extend for one 

volume beyond the number of elements contained in the .tsv design files. This is expected

behavior (due to how the pre-processing is performed); to achieve correspondence to the 

.tsv design files, one can simply trim (drop) the trailing volumes of the fMRI (and motion) 

data.

nsddata_timeseries/ppdata/subjAA/func*/design/design_sessionBB_runCC.tsv

 

This is a specification of the design of the NSD experiment. Each file is a column 

vector of integers, and the number of elements corresponds to the number of 

volumes in the functional data preparation for a given run. Each element is either N 

where N is a 73k ID (1-indexed), marking the onset of a presentation of that image, 

or 0 for all other elements. Note that in order to achieve correspondence to the 

motion and fMRI time-series data files, the run number CC is 1-12 for scan sessions 

that contained only NSD runs but is 1-14 for scan sessions that included resting-

state runs (in this case, the first (1) and last (14) runs are resting-state runs and the 

middle 12 runs are the NSD runs). Also, note that in the case of resting-state runs, 

the .tsv file consists simply of all 0s. Finally, note that the information contained in 

these .tsv files is redundant with respect to the nsd_expdesign.mat file (see 

Experiments ), but is provided in this .tsv format for your convenience.

nsddata_timeseries/ppdata/subjAA/func*/design/design_floc_runCC.tsv

This is a specification of the design of the floc experiment. Each file is a column 

vector of integers, and the number of elements corresponds to the number of 

volumes in the functional data preparation for a given run. Each element is either N 

where N is between 1 and 10 marking the onset of one of the 10 categories in the floc

experiment, or 0 for all other elements. Note that CC ranges from 1 through 6 (even 

though the 6 floc runs were acquired chronologically as runs 3, 4, 7, 8, 11, and 12 in 

the prffloc scan session).

nsddata_timeseries/ppdata/subjAA/func*/design/design_nsdsynthetic_runCC.t

sv

https://slite.com/api/public/notes/NKalgWd__F/redirect
https://slite.com/api/public/notes/NKalgWd__F/redirect
https://slite.com/api/public/notes/NKalgWd__F/redirect
https://slite.com/api/public/notes/NKalgWd__F/redirect


This is a specification of the design of the NSDsynthetic experiment. The files 

correspond to the chronological acquisition order of the 8 NSDsynthetic runs (these 

runs alternated between fixation runs and memory runs). Each file is a column vector 

of integers, and the number of elements corresponds to the number of volumes in the 

functional data preparation for a given run. Each element is either N where N is a 

284-id (1-indexed), marking the onset of a presentation of that image, or 0 for all 

other elements. Note that the information contained in these .tsv files is redundant 

with respect to the nsdsynthetic_expdesign.mat file (see 

), but is provided in this .tsv format for your convenience.

Physiological data
 

Pulse and respiratory data were collected in NSD scan sessions 21-30 (same as when 

the primary set of resting-state data are acquired).

 

nsddata_timeseries/ppdata/subjAA/physio/physio_BB_runCC_DDDD.tsv

 

CC ranges from 1 to 14 (chronological acquisition order), and DDDD is either ‘puls’ 

or ‘resp’, indicating pulse and respiratory data, respectively. Each file consists of a 

column of numbers (typically numbering 15040 or 15041). The numbers in the .tsv 

file contain the actual physiological data samples extracted from the Siemens files. It 

appears that they can be interpreted as close to exactly 50-Hz sampling (more on 

this below). The data samples start immediately after the AcquisitionTime of the first 

DICOM volume and end immediately after the completion of the last DICOM volume. 

Note that no actual analysis of the physiological data has been performed (aside 

from the timing extraction).

 

Notes on how we handled the synchronization of the physiological data and the fMRI 

data: Our strategy was to assume the accuracy of the LogStartMDHTime and 

LogStopMDHTime values stored in the Siemens files. We assume that these times 

correspond to the absolute time of the first and last physiological data samples. We 

also assume that the data samples come in equally spaced in time. In order to 

synchronize with the fMRI data, we extracted the AcquisitionTime stored in the 

DICOM headers of the first volume of each run, and used that time accordingly along 

  Functional data 

(nsdsynthetic) 

https://slite.com/api/public/notes/wLlJyfWRvg/redirect
https://slite.com/api/public/notes/wLlJyfWRvg/redirect
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with an empirical measurement of the average DICOM duration as recorded by the 

scanner internal clock.

 

To interpret the timing of a .tsv file, the following is suggested. Since the TR is 1600 

ms and since we acquired 188 volumes in each run, we expect the fMRI acquisition 

to last from time 0 s through time 300.8 s. Thus, if there are say, 15040 samples in a 

given .tsv file, we can assume that the time points corresponding to these samples is 

something like linspace(0,300.8,15040). Moreover, the acquisition times for each of 

the raw 188 fMRI volumes would correspond to 0, 1.6, 3.2, and so on. In pre-

processing, we correct for slice time differences and also upsample the data to either 

0.999878 s (for the func1mm preparation) or 0.999878*(4/3) = 1.333171 s (for the 

func1pt8mm preparation). Thus, the times corresponding to the pre-processed fMRI 

time-series volumes would be 0, 0.999878, 1.999756, and so on (for func1mm) or 0, 

1.333171, 2.666342, and so on (for func1pt8mm).

 

Occasionally, a physio .tsv file will have a different number of samples (e.g. 15000). It 

is not clear what the cause of this is (perhaps dropped frames?). We suggest to 

proceed as described above and assume that the first and last frames still 

correspond to 0 s and 300.8 s.

Eyetracking data

Note that only the NSD runs (and not the resting-state runs) have associated eyetracking 

video and data. For this reason, the files from a given scan session may start with run02 

and this is correct behavior (since sessions with resting-state data have resting-state 

runs as run01 and run14).

Note that the "CC" in the runCC filename is in chronological acquisition order. If you are 

matching these to the raw BIDS data, please see the Raw data  page for how the 

naming scheme is designed.

nsddata_timeseries/ppdata/subjAA/eyevideo/eyevideo_BB_runCC.mp4

This is a video capture of the eyetracker computer's display (via a cell phone). This 

may be a useful complement to the actual eyetracking data (e.g., for informal 

https://slite.com/api/public/notes/D__44exzOj/redirect
https://slite.com/api/public/notes/D__44exzOj/redirect
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inspection of the subject's eye and/or for when the eyetracker failed to lock onto the 

subject's pupil).

All of the .mp4 clips have been cropped to exactly match the fMRI data acquisition 

duration (i.e., from the start of the very first fMRI volume through the acquisition of the

very last fMRI volume in a given run). This cropping was done manually by a human 

on basis of the audio cues from the video recording; the approximate accuracy of this 

manual procedure is estimated to be about +/- 1 s. For example, the expected 

duration of an .mp4 file corresponding to 1 NSD run is 188*1.6 s = 300.8 s.

To protect privacy, the .mp4 files have had the audio stripped (only video is present). 

The .mp4 files often begin with a few seconds of a black screen — this is correct 

behavior and is due to video codec issues. When interpreting the timecodes from 

these video files, be careful to ensure that whatever software you are using is using 

precise timecodes as opposed to approximate estimates.

nsddata_timeseries/ppdata/subjAA/eyedata/eyedata_BB_runCC.edf

This is the raw eyetracking data file obtained from the EyeLink device. The 

eyetracker was run at 2000 Hz. The BOLDscreen was run at 1920 x 1080. Note that 

8.4° of visual angle (the size of the NSD stimuli) corresponds to 714 pixels on the 

BOLDscreen.

The utility edf2asc can be used to convert the .edf file to ASCII format. The edf2asc 

utility is available from SR Research.

sample frame from one of the videos

https://www.sr-support.com/


Keep in mind that eyetracking data acquisition starts well before actual fMRI data 

acquisition (approximately 30-90 seconds before). To determine precise 

synchronization between the eyetracking data and other measures (e.g. the fMRI 

data), the stimulus computer issues a synchronization message (using 

PsychToolbox) to the eyetracker computer:

Eyelink('Message','SYNCTIME')

and this is done right before the actual experiment starts (i.e. right before the display 

of the very first stimulus frame) and right after the experiment ends (i.e. right after the 

display of the very last stimulus frame). For example, in a sample .edf file for an NSD 

run, we find that there is a SYNCTIME message that occurs at timestamp 12829505 

and timestamp 13129473. Notice that 13129473-12829505 = 299968, which is 

interpreted as 299.968 s. The experiment conducted in NSD runs is indeed intended 

to be 300 s long. If we use the precise time estimates (see Technical notes ), we 

find that 0.999878 s * 300 = 299.9634 s, which is quite close to the duration 

indicated by the eyetracking timestamps. (However, keep in mind that the fMRI data 

acquisition extends a little bit longer than the actual experiment duration (e.g., 1 NSD 

run consists of 188 volumes * 1.6 s = 300.8 s). See Technical notes  for more 

details.)

nsddata/inspections/eyetrackinginspections/pupil_subjAA_BB_runCC.jpg

This shows the pupil area over time before (top panel) and after preprocessing 

(bottom panel). Detected blinks and noise shown in orange. Each file shows the data 

of a single scanning run and subject. 

nsddata/inspections/eyetrackinginspections/XY_subjAA_BB_runCC.jpg

This shows the preprocessed gaze positions as 2D scatter plot (top left) and as line 

plots for horizontal (X, top right) and vertical gaze coordinates (Y, bottom right 

panel). It further shows a histogram of the Euclidean distances between each 

recorded gaze position and the median gaze position (bottom left panel). Removed 

blinks and noise marked in orange.

nsddata_timeseries/ppdata/subjAA/eyedata_preprocessed.mat

https://slite.com/api/public/notes/h_T_2Djeid/redirect
https://slite.com/api/public/notes/h_T_2Djeid/redirect
https://slite.com/api/public/notes/h_T_2Djeid/redirect
https://slite.com/api/public/notes/h_T_2Djeid/redirect
https://slite.com/api/public/notes/h_T_2Djeid/redirect
https://slite.com/api/public/notes/h_T_2Djeid/redirect


This contains the pre-processed eyetracking data. The data is stored in a cell array 

named “data”. Each cell represents one scanning run. Following fields are included.

samples: Raw data cut to imaging session

samples_clean: Preprocessed data (no blinks & noise)

samples_blinks: Blinks & noise removed from samples_clean

filename: Name of the imported raw data file (after edf-to-ascii conversion)

euclDist: Euclidean distance to median gaze position over time

messages: EDF-file header and recorded messages 

saccs: Saccade on-/offsets detected by the Eyelink

blinks: Blink on-/offsets detected by the Eyelink

valid_ratio: Percent valid samples after preprocessing

Note that “samples”, “samples_clean” and “samples_blinks” all contain 2D matrices with 

time stamps (column 1), horizontal gaze position (column 2), vertical gaze position 

(column 3) as well as pupil area (column 4) over time (rows).



Informational �iles
This section covers various informational files and other files relevant to how the NSD 

data were pre-processed.

Informational files

nsddata/information/knowndataproblems.txt 

 

This is a detailed, comprehensive list of all known data problems. Most of these 

problems are very minor, but we are deliberately comprehensive so that the user 

understands what is in the data.

See also a recently discovered issue in .

 

nsddata/information/nsddatacollection.xlsx 

 

A table that provides an overview of all of the NSD data collected.

nsddata/information/nsddemographics.xlsx 

 

A table that provides demographic information (age, sex) on the NSD subjects as 

well as basic information concerning vision- and language-related abilities. The table 

also provides behavioral data for TOWRE and VVIQ.

  Technical notes 

nsddatacollection.xlsx

nsddemographics.xlsx

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/information/knowndataproblems.txt
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/information/nsddatacollection.xlsx
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/information/nsddemographics.xlsx
https://slite.com/api/public/notes/h_T_2Djeid/redirect
https://slite.com/api/public/notes/h_T_2Djeid/redirect
https://slite.com/api/public/notes/h_T_2Djeid/redirect


nsddata/information/nsdsessionlog.xlsx 

A table that provides information at the level of individual scanning sessions. 

Includes information such as time of session, notes on eyetracking and physiology, 

sleepiness ratings, mood, stress, hunger, general notes on scanning, and subject 

feedback.

nsddata/information/runmetrics.mat

 

This file contains some data quality metrics that are computed at the level of 

individual NSD runs. There are two variables:

‘runmetrics’ is 8 subjects x 40 sessions x 12 runs x 7 metrics. The seven 

metrics, in order, are (1) tSNR (this was computed by taking the raw functional 

volumes, computing the voxel-wise mean of each voxel divided by the voxel-wise

standard deviation after quadratic detrending of each voxel’s time-series, and 

the calculating the median value observed across a liberal whole-brain mask), 

(2) FD (this was computed on the 1.8-mm version of the pre-processed data by 

computing the absolute value of the temporal derivative of each of the six motion 

parameters in each run, computing a weighted sum according to weights [1 1 1 

50 50 50], and calculating the mean FD across the volumes in the run), (3) ON-

OFF R^2 (for the 1.8-mm version of the data, we fit a simple ON-OFF GLM to 

the voxel time-series, and we extract the variance explained for each run and 

compute the median variance explained across voxels in the nsdgeneral ROI), 

(4) response rate (percentage of trials on which a button was pressed), (5) 

percent correct (percentage of trials for which the subject pressed the correct 

response), (6) easy trials (percentage of easy trials (trials that are memory 

events for an image seen earlier in the scan session) for which the subject 

pressed the correct response; can be NaN for cases where there are zero easy 

nsdsessionlog.xlsx

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/information/nsdsessionlog.xlsx


trials), and (7) number of easy trials (the number of easy trials that actually 

occurred; this is useful because some runs might have zero or very few easy 

trials).

‘runmetricsRS’ is 8 subjects x 40 sessions x 2 runs x 2 metrics. The two metrics, 

in order, are tSNR and FD, as described above. When acquired, the resting-

state runs were acquired as the very first and very last run in a given session.

 

Note that because not all subjects participated in all 40 sessions, some of the values 

in ‘runmetrics’ are NaN. Also, note that because resting-state data were acquired in 

only certain sessions, some of the values in ‘runmetricsRS’ are NaN. Also, note that 

for subject 8’s second NSD session, the fourth run was actually split across two 

distinct scan sessions (on different days); when computing FD, we compensated for 

this discontinuity (by dropping the appropriate volume), and when computing tSNR, 

we considered only the first segment of the fourth run. Also, note that for subject 1, 

session 2, run 2, there was complete MR signal loss for a few volumes in the middle 

of the run, and for this reason the tSNR values are abnormally low for that run (in the 

pre-processing of the data, compensation was applied to appropriately deal with this 

issue).

nsddata/information/b3pcnum_*.tsv

This text file contains a 2D matrix of dimensionality 40 sessions x 8 subjects. The 

entries indicate the number of nuisance regressors chosen by GLMdenoise for each 

NSD scan session. NaNs indicate scan sessions that subjects did not participate in.

Files related to pre-processing

nsddata/templates/expert.opts

 

FreeSurfer configuration file that was used.

 

nsddata/templates/FreeSurferColorLUT.txt

 

Information file copied from the FreeSurfer software package.

 



nsddata/templates/hrfs_*.mat

 

Each of these files contains a variable ‘hrfs’ that has dimensions time-points x 20 

HRFs. The first time point is coincident with trial onset. There are 20 different HRFs 

comprising the library of HRFs used to estimate voxel-specific HRFs. The ‘func1mm’ 

version has a sampling rate of 1-s whereas the ‘func1pt8mm’ version has a sampling 

rate of 1.333-s.

 

nsddata/templates/hrfparams.mat

 

Contains HRF parameters (using the parametric function implemented in spm_hrf.m) 

that were determined by fitting each of the HRFs in the library of HRFs (as described 

above). The variable ‘params’ is 20 different HRFs x 7 parameters.

nsddata/inspections/hrfparams_example.*

 

An example MATLAB script that generates an figure illustrating the contents of the 

hrfparams.mat file.

nsddata/templates/MNI152*

 

MNI template files copied from fsl-5.0.7/fsl/data/standard. These were used in the 

pre-processing of the NSD data.

nsddata/templates/T1_2_MNI152_2mm.cnf

 

Configuration file used in the T1-to-MNI alignment procedure.



Data inspections
We generated a variety of images and movies that provide a comprehensive look at the 

quality of the NSD data and pre-processing results.

In the various inspections, note that "sess00" corresponds to the prffloc scan session. 

Also, note that inspections are included even for the held-out data (now released). For 

example, for subj01, sess38-sess40 are the 3 held-out NSD scan sessions (now 

released), sess41 is the nsdsynthetic scan session, and sess42 is the nsdimagery scan 

session. As another example, for subj08, sess28-sess30 are the 3 held-out NSD scan 

sessions (now released).

nsddata/inspections/b3noiseceiling.mp4 

Same as Supplementary Video 10 of the data paper. This shows the group-average 

b3 noise ceiling results on a rotating brain.

nsddata/inspections/coregistration/T1-T2-EPI.mp4 

nsddata/inspections/coregistration/T1-TOF.mp4 

nsddata/inspections/coregistration/T2-SWI.mp4 

Same as Supplementary Video 1 of the data paper. These show the various 

modalities collected on the NSD subjects (T1, T2, EPI, TOF, SWI). The figures show 

the end-result of pre-processing and are all in the common anatomical space set by 

the T1 volume.

screenshot from 

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/b3noiseceiling.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/coregistration/T1-T2-EPI.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/coregistration/T1-TOF.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/coregistration/T2-SWI.mp4


nsddata/inspections/flattenedsurfaces/

Screenshots showing where cuts were made to the fsaverage surface and each 

individual NSD subject’s surface in order to allow flattening of the cortical surfaces. 

Cuts were placed in approximately consistent locations across subjects.

nsddata/inspections/fsaveragecheck.mp4 

Same as Supplementary Video 3 of the data paper. This movie shows the results of 

curvature-based fsaverage alignment for the NSD subjects. 

screenshot from T1-T2-EPI.mp4

subj01_lh_cut.png

screenshot from fsaveragecheck.mp4

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/fsaveragecheck.mp4


nsddata/inspections/functionaltostructural/

These images show, for each NSD subject, the alignment achieved between the EPI 

data and the T2 anatomical volume. One result is shown for an affine transformation, 

and another result is shown for the nonlinear ANTS transformation. The ANTS 

transformation is used for the prepared NSD data.

nsddata/inspections/gradunwarp/

Sample figures illustrating the size of the gradient nonlinearity effect at the two 

different scanners used (3T and 7T).

nsddata/inspections/grandmean.mp4 

nsddata/inspections/grandmeansurface.mp4 

nsddata/inspections/grandR2.mp4 

nsddata/inspections/grandR2surface.mp4 

Same as Supplementary Videos 6-9 in the data paper. These movies show the 

stability of the mean EPI and of BOLD signal strength across all scan sessions for all 

subjects.

nsddata/inspections/HRT2/

Figures illustrating the alignment achieved for the high-resolution T2 volume acquired

for each NSD subject. The figures include the small box used for alignment (mask); 

the high-res T2 volume masked by this box (masked); the full high-res T2 volume 

(raw); manually defined MTL labels (rawlabels); resliced volume from the T2 

anatomy masked by the box (T2matched_masked); and the full resliced volume from 

the T2 anatomy (T2matched).

screenshot from grandmeansurface.mp4

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/grandmean.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/grandmeansurface.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/grandR2.mp4
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/grandR2surface.mp4


nsddata/inspections/MNIcheck.mp4 

Same as Supplementary Video 4. This shows the quality of the volume-based 

nonlinear MNI alignment.

nsddata/inspections/motioninspections*

At-a-glance inspection of all motion parameter estimates for all subjects in all 

sessions. 

subj01_masked.png

screenshot from MNIcheck.mp4

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/MNIcheck.mp4


nsddata/inspections/physioinspections*

At-a-glance inspection of physiological data for all subjects in all sessions.

nsddata/inspections/randomscrubbing.mp4 

This movie shows an inspection of the overall stability of the pre-processed fMRI 

data. For each subject, we show 100 volumes randomly picked over time (all runs, all 

scan sessions). 

subj01_sess32.png

physioinspections_resp/subj01_sess25.png

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/inspections/randomscrubbing.mp4


nsddata/inspections/rawdatamovies/

Same as Supplementary Video 5. For one example run (NSD session 10, run 6), we 

show movies of both the raw fMRI volumes and the pre-processed fMRI volumes for 

each NSD subject.

nsddata/inspections/rois/

A variety of visualizations of the ROIs provided with the NSD dataset.

screenshot from randomscrubbing.mp4

screenshot from 



nsddata/inspections/sessionwise/

For each NSD subject, we inspect the mean EPI and ON-OFF R^2 results in each 

scan session (1.8-mm preparation).

nsddata/inspections/subjectmontages/

At-a-glance inspection of all NSD subjects' cortical surface reconstructions, including 

how well they align to the fsaverage template.

prf-visualandecc/subj01_prf-

subj01/R2_sess09.png



nsddata/inspections/surfaceinspections/

Same as Supplementary Video 2 from the data paper. These movies show 3 views of

each subjects' T1 anatomy. The obtained FreeSurfer cortical surface reconstructions 

are indicated. 

nsddata/inspections/surfacevisualizations/

A variety of different surface maps visualizing different aspects of the NSD dataset.

bNnc - These are noise ceilings computed for the different beta versions (b1, 

b2, b3). The noise ceilings reflect the case of 3 trials being averaged together. 

native.png

screenshot from subj03_sagittal.mp4



The color range is [0 75] with a jet colormap.

b3R2 - these are GLM R^2 values for the b3 GLM model. The values range from

0% to 100%. For display, the values are divided by 100, square-rooted, and then 

visualized using a range of [0 1] with a hot colormap.

[corticalsulc,HCP_MMP1,Kastner2015,nsdgeneral,streams] - These are 

visualizations of various ROI collections defined on fsaverage.

curvature - These are visualizations of binarized curvature values.

mean - These are visualizations of the mean fMRI signal using a range of [0 

2000] with a gray colormap.

probmap - These are visualizations of the fraction of subjects that have a given 

ROI at each fsaverage vertex. The range is [0 1] with a copper colormap. Values 

that are equal to 0 are thresholded away.

R2 - These are R^2 values from the simple ON-OFF GLM model fitted to the 

NSD data. Values range from 0 to 100%. For display, values are divided by 100, 

square-rooted, and then visualized using a range of [0 1] with a hot colormap.

signaldropout - These are regions deemed to suffer from signal dropout (using 

methods described in the data paper). The maps are binary for each subject. 

The group result is the average of binary values across subjects. All are 

visualized using [0 1] with a winter colormap.

surfaceimperfections - These are regions deemed to suffer from cortical 

surface reconstruction errors (as described in the data paper). The maps are 

binary for each subject. The group result is the average of binary values across 

subjects. All are visualized using [0 1] with a winter colormap.

valid - These are indications of which vertices have valid data during the NSD 

experiment. The binary values are averaged across sessions conducted for a 

given subject. The color range is [0 1] with a jet colormap.

Note that "fsaverageflat" refers to a flattened version of the fsaverage surface, 

whereas "subjNNflat" refers to a flattened version of subject NN's native surface.



Behavioral data
This section covers behavioral data acquired for the NSD dataset. Note that some 

behavioral data is provided in nsddemographics.xlsx (as documented in Informational

files ).

NSD experiment

nsddata/ppdata/subjAA/behav/responses.tsv

 

This is a tab-separated text file that contains all behavioral data from the NSD 

experiment for subject AA. After a header row, what follows is one row for every 

stimulus trial encountered by the subject. Stimulus trials from different runs and scan 

sessions are concatenated together.

 

 Column 1 (SUBJECT) is the subject number (1-8).

 Column 2 (SESSION) is the session number (1-40).

 Column 3 (RUN) is the run number (1-12).

 Column 4 (TRIAL) is the stimulus trial number (1-63 (odd runs) or 1-62 (even 

runs)). Note that the numbering of stimulus trials ignores (skips over) blank trials.

 Column 5 (73KID) is the 73k ID of the presented image. (Note that here, the 73k 

IDs are provided as 1-based indices.)

 Column 6 (10KID) is the 10k ID of the presented image. (Note that here, the 10k 

IDs are provided as 1-based indices.)

 Column 7 (TIME) is the trial start time (i.e. time that the image comes on) as a 

MATLAB serial date number. The units are days. Time 0 is defined as the 

beginning (midnight) of the day that the subject’s first NSD core scan session 

took place.

 Column 8 (ISOLD) is 0 (the image is novel) or 1 (the image is old).

 Column 9 (ISCORRECT) is 0 (subject’s response was incorrect) or 1 (subject’s 

response was correct).

 Column 10 (RT) is the reaction time in milliseconds (time between trial start time 

and button-press time).

https://slite.com/api/public/notes/TL2ltDZ75o/redirect
https://slite.com/api/public/notes/TL2ltDZ75o/redirect
https://slite.com/api/public/notes/TL2ltDZ75o/redirect
https://slite.com/api/public/notes/TL2ltDZ75o/redirect


 Column 11 (CHANGEMIND) is whether this is a trial that involved more than 

one button press (0 = no, 1 = yes, NaN = no buttons pressed). We score only the 

final button pressed by the subject.

 Column 12 (MEMORYRECENT) is the number of stimulus trials in between 

current and most recent presentation. 0 means the current and most recent 

presentation followed one another (no stimulus trials in between).

 Column 13 (MEMORYFIRST) is the number of stimulus trials in between 

current and second most recent presentation. If there has been only one 

previous presentation, this is NaN.

 Column 14 (ISOLDCURRENT) is 0 (the image is novel) or 1 (the image is old) 

with respect to acting as if the experiment included only the current session.

 Column 15 (ISCORRECTCURRENT) is 0 (subject’s response was incorrect) or 

1 (subject’s response was correct) with respect to acting as if the experiment 

included only the current session.

 Column 16 (TOTAL1) is the total number of 1s ("novel") pressed during this trial.

Will be a non-negative integer.

 Column 17 (TOTAL2) is the total number of 2s (“old”) pressed during this trial. 

Will be a non-negative integer.

 Column 18 (BUTTON) is the button pressed by the subject (1 = button 1, 2 = 

button 2, NaN = no buttons pressed). Note that there might be multiple buttons 

pressed during a trial; we score only the final button pressed (and consider the 

very first of a series of repeated presses of the same button).

 Column 19 (MISSINGDATA) is 0 (button presses were recorded) or 1 (buttons 

failed to be recorded). This is very rare (it happened in two runs (see 

knowndataproblems.txt)), and if it happens, it happens at the level of entire runs. 

In the case that buttons failed to be recorded, note that columns 9-11 and 15-18 

are necessarily NaN.

 

Note that columns 12-13 are NaN for the case of novel images. Note that columns 9-

11, 15, and 18 are NaN if no button is pressed on a given trial.

prf experiment

nsddata/bdata/prf/



Results from the prf experiment. For each subject, <results> is [A,B,C] x 6 runs, 

where A is the total number of color changes, B is the number of hits, and C is the 

number of false alarms (extra button presses).

floc experiment

nsddata/bdata/floc/

Results from the floc experiment. For each subject, <results> is [A,B,C] x 6 runs, 

where A is the total number of trials, B is the number of hits, and C is the number of 

false alarms.

nsdpostbehavior

nsddata/bdata/cmtf/

Results from the Cambridge Memory Test for Faces experiment.

nsddata/bdata/flicker/

Results from the flicker-based assessment of chromatic sensitivity. While maintaining

fixation, participants adjusted intensities of red, green, and blue channels on the 

BOLDscreen display until minimal luminance flicker was perceived. The basic 

presentation setup was to rapidly switch between two colors (A and B), performing 

this 15 times in 1 second. Three different trial types were conducted: (1) fix the green 

channel to 26, ignore blue, and vary the red channel, (2) fix the red channel to 77, 

ignore green, and vary the blue channel, and (3) fix the green channel to 26, ignore 

red, and vary the blue channel.

nsdmeadows

nsddata/bdata/meadows/



Results from the nsdmeadows experiment. A set of 100 images were chosen on the 

basis of their position in a semantic representational space. Participants performed 

three different behavioural tasks with these chosen stimuli. First, participants were 

asked to perform a multiple-arrangements task, arranging images according to their 

similarity with mouse drag and drop operations. Following this, participants 

performed additional arrangements along a valence scale, and along an arousal 

scale. 

The data is stored in a .json file. The json dictionary has a key for each subject, and 

in each subject's subdict, there are 11 tasks. The first task is the multiple 

arrangements task, and this is followed by five separate blocks for valence and five 

separate blocks for arousal.

Some example code in Python can be found as part of the nsdcode repository here:

https://github.com/kendrickkay/nsdcode/blob/master/examples/examples_m

eadowsdata.py

nsdmemory

nsddata/bdata/nsdmemory/nsdmemory_subj??.[mat,tsv]

These contain the raw data for the nsdmemory experiment.

nsdsynthetic experiment

nsddata/bdata/nsdsynthetic/

Results from the nsdsynthetic experiment. For each subject, we have the following:

<numcorrect> is 4 x 1 indicating for each fixation-task run, the number of color 

change events that were correctly answered.

<numincorrect> is 4 x 1 indicating for each fixation-task run, the number of color 

change events that were incorrectly answered.

https://github.com/kendrickkay/nsdcode/blob/master/examples/examples_meadowsdata.py
https://github.com/kendrickkay/nsdcode/blob/master/examples/examples_meadowsdata.py


<pctcorrect> is 4 x 1 indicating for each fixation-task run, the percent correct for color 

change events.

<pctcorrectTOTAL> is a scalar indicating, after aggregating across all fixation-task 

runs, the percent correct.

<sdtmatrix> is a 2 x 2 x 4 matrix with 2 x 2 outcomes for each of the four memory-

task runs. The first row contains the number of hits and the number of misses, and 

the second row contains the number of false alarms and the number of correct 

rejections.

<dprime> is 4 x 1 with the d-prime metric obtained for each memory-task run.

<dprimeTOTAL> is a scalar indicating, after aggregating across all memory-task 

runs, the d-prime metric.

Post-scanning questionnaires

nsddata/bdata/postnsd/

Results from the questionnaire given to NSD subjects after completion of the NSD 

experiment and final memory test.

nsddata/bdata/postrestingstate/

Results from the questionnaire given to NSD subjects after completion of resting-

state data collection.



Spaces for imaging data
This section describes the spaces used in the prepared NSD data. Understanding this 

information is important for appropriate handling of the imaging data.

Spaces for the pre-processed data

Each subject has two functional data preparations: “func1mm” and “func1pt8mm”. This 

refers to either preparing the data at 1-mm spacing (i.e. upsampling the data) or at 1.8-

mm spacing. The 1-mm data has additional fine-scale detail, but is very large in size 

(approximately 6 times larger than the 1.8-mm data). There is also a difference in 

temporal resolution in the pre-processed data: the temporal sampling rate (TR) for the 

two preparations is 1 s and 1.333 s, respectively.

 

The two functional data preparations are in the same physical space. For example, the 

two preparations share a common first “corner” voxel (located at anterior, right, inferior) 

and the data from this voxel are identical across the two preparations. However, the two 

preparations have slightly different fields-of-view (since the voxel sizes do not evenly 

divide).

 

Each subject has three anatomical data preparations: “anat0pt5”, “anat0pt8”, 

“anat1pt0”. This refers to preparing the anatomical data (e.g. T1, T2) at 0.5-mm, 0.8-

mm, and 1.0-mm resolution. All three versions share exactly the same field-of-view and 

are centered at exactly the same location in space.

 

The functional and anatomical data are not in register; rather, we have estimated a 

nonlinear warping for each subject that specifies how the functional data can be 

registered to the anatomical data (and vice versa). In some cases, we provide convenient 

versions of the data that have already been mapped (e.g. a version of the T1 that is 

warped and matched to the functional data).

 

There are three other spaces of note:

Some analysis results are prepared in FreeSurfer's surface space, and they are 

either contained within FreeSurfer directories (e.g. "label") or in directories named 

nativesurface.



Some analysis results are prepared in MNI space. This is achieved based on a 

nonlinear warp estimated for each subject that takes their 1.0-mm T1 and matches a 

1-mm MNI template.

Some analysis results are prepared in FreeSurfer's fsaverage space. This is 

achieved based on the curvature-based alignment provided by FreeSurfer.

Note that for the diffusion data, the pre-processed volumes are matched to the anat0pt8 

space (0.8-mm).

Basic handling of NSD data files

All NIFTI files in the prepared NSD data are in LPI ordering (the first voxel is Left, 

Posterior, and Inferior). In addition, all NIFTI files have their origin set to the exact center 

of the image slab, with one exception being NIFTI files in MNI space (for details, see 

Technical notes ).

We have pre-computed transformations that map between the various spaces, and these 

transformations are incorporated into the lightweight utility nsd_mapdata. This utility 

transforms user-supplied data from one space to another using interpolation (see 

Code  for details).

https://slite.com/api/public/notes/h_T_2Djeid/redirect
https://slite.com/api/public/notes/h_T_2Djeid/redirect
https://slite.com/api/public/notes/h_T_2Djeid/redirect
https://slite.com/api/public/notes/h_T_2Djeid/redirect
https://slite.com/api/public/notes/60cYHMMmm3/redirect
https://slite.com/api/public/notes/60cYHMMmm3/redirect
https://slite.com/api/public/notes/60cYHMMmm3/redirect
https://slite.com/api/public/notes/60cYHMMmm3/redirect


Structural data
This covers anatomical data prepared for the NSD dataset (e.g. T1 and T2 volumes) as 

well as FreeSurfer outputs.

Anatomical files
 

nsddata/ppdata/subjAA/anat/aseg_RRRR.nii.gz

nsddata/ppdata/subjAA/func*/aseg.nii.gz

 

This is the aseg.mgz (anatomical segmentation) file that is created by FreeSurfer but 

transformed (using winner-take-all) to the official NSD anatomical spaces and 

functional spaces. See FreeSurfer’s FreeSurferColorLUT.txt file (a copy is in 

nsddata/templates/FreeSurferColorLUT.txt) for interpretation of what the integer 

values mean. This information allows you to select white matter, CSF, ventricles, 

subcortical regions, etc.

 

nsddata/ppdata/subjAA/anat/brainmask_RRRR.nii.gz

 

The binary brain mask that was used to mask the anatomical volumes (e.g. T1, T2) 

for de-identification purposes. Note that this brain mask is intentionally liberal so as to

not lose brain voxels.

subj01/anat/aseg_0pt8.nii.gz



nsddata/ppdata/subjAA/anat/EPI_to_anat1pt0.nii.gz

nsddata/ppdata/subjAA/anat/EPI_to_MNI.nii.gz

 

A version of the mean EPI volume that has been warped to the 1.0-mm anatomical 

space for that subject, as well as a version that has been warped to MNI space.

nsddata/ppdata/subjAA/anat/hippoSfLabels_RRRR.nii.gz

nsddata/ppdata/subjAA/func*/hippoSfLabels.nii.gz

 

subj01/anat/brainmask_0pt8.nii.gz

subj01/anat/EPI_to_anat1pt0.nii.gz



This is the automated FreeSurfer hippocampal segmentation that has been 

transformed (using winner-take-all) to the official NSD anatomical spaces and 

functional spaces. 

 

nsddata/ppdata/subjAA/anat/surfaceimperfections_RRRR.nii.gz

nsddata/freesurfer/subjAA/label/[lh,rh].surfaceimperfections.mgz

This shows locations of errors in FreeSurfer cortical surface reconstructions, as 

determined by visual inspection. There are generally few errors, and these errors 

occur in stereotypical locations (see NSD data paper).

subj01/anat/hippoSfLabels_0pt8.nii.gz

subj01/anat/surfaceimperfections_0pt8.nii.gz



nsddata/ppdata/subjAA/anat/[T1,T2,SWI,TOF]_RRRR_masked.nii.gz

 

The official T1, T2, SWI, and TOF volumes for a given subject. These volumes have 

been masked. The different resolutions of the volumes all share the exact same field-

of-view and exact same center.

nsddata/ppdata/subjAA/anat/DWI_RRRR.nii.gz

Here, we took the pre-processed diffusion data, extracted the b0 volumes, averaged 

the b0 volumes within Run 1 and within Run 2, and then averaged the two averages 

together, producing a single volume (at 0.8-mm resolution). This volume was then 

resampled to different resolutions (in the same manner as the other anatomical 

volumes).

nsddata/ppdata/subjAA/anat/[T1,T2,SWI,TOF]_to_MNI.nii.gz

 

Versions of the volumes that have been warped to MNI space.

subj01/anat/T1_0pt8_masked.nii.gz



FreeSurfer files
 

nsddata/freesurfer/subjAA

 

This is the final FreeSurfer directory for subject AA, reflecting the result of manual 

edits to the tissue segmentation.

 

In running FreeSurfer, a 0.8-mm T1 volume was provided to FreeSurfer and the ‘-

hires’ flag was used. Also, we have performed additional FreeSurfer-related 

processing, which created additional files. The changes include (1) creating layerB1, 

layerB2, and layerB3 surfaces which correspond to 25%, 50%, and 75% of the 

distance from the pial surface to the white-matter surface; (2) creating semi-inflated 

surfaces (e.g. ?h.semiinflated + ?h.sulcsemiinflated); and (3) creating flattened 

cortical surfaces (e.g. ?h.full.flat.patch.3d)). Also, note that the manually edited 

subject directory has modified files: for example, the brainmask.mgz file has had 

“holes” put into it (to aid in the surface reconstruction process).

Note that FreeSurfer has a built-in fsaverage flattened surface called 

[lh,rh].cortex.patch.flat. This is distinct from the flattened cortical surfaces described 

above. Note that the two flattened surfaces are rotated differently, so one may need 

to rotate the surfaces to a more canonical orientation for visualization purposes. Also, 

subj01/anat/T1_to_MNI.nii.gz



note that the full-cortex flattened surfaces remove substantial cortex near the midline 

(e.g. cingulate cortex), so be careful when interpreting results.

Besides the typical FreeSurfer outputs, the subject directories also contain a number 

of NSD-specific data files. These include ROI files and results from the prf, floc, and 

NSD experiments.

 

nsddata/freesurfer/fsaverage

 

The FreeSurfer special "fsaverage" subject. Again, additional files are present in this 

directory, reflecting additional FreeSurfer-related processing that we have 

performed.

 

nsddata/freesurfer/fsaverage[_sym,3,4,5,6]

 

These are standard FreeSurfer directories. No additional files are present in these 

directories.

 

nsddata_other/freesurferoriginals/subjAA_original

This is the original, non-edited FreeSurfer output for subject AA. Note that the 

surfaces in the edited and original versions are not compatible with one another, 

given that they have different numbers of vertices.

 

nsddata_other/freesurferoriginals/subjAA_repBB

 

This the raw FreeSurfer output produced when run on an individual T1 acquisition 

(the BBth one) for subject AA. (Please note that the individual T1 acquisitions 

processed here are after the co-registration procedure; hence, all of the results 

should be directly spatially comparable.) The call to FreeSurfer was the same as the 

original FreeSurfer call, except that the -hippocampal-subfields option was run with -

T1 not -T1T2. Furthermore, no additional FreeSurfer-related processing was run for 

these directories.

 

These individual T1 FreeSurfer directories may be useful for assessing the reliability 

of FreeSurfer outputs for individual subjects. However, note that the final FreeSurfer 



directory (freesurfer/subjAA) reflects manual edits to the segmentation. Thus, a more 

appropriate comparison may be to use the freesurferoriginals/subjAA_original 

directory.



Functional data (general)
This covers general files that pertain to the preparation of the fMRI data.

 

nsddata/ppdata/subjAA/func1mm

 

This contains the high-resolution 1-mm preparation of the fMRI data.

 

nsddata/ppdata/subjAA/func1pt8mm

 

This contains the standard-resolution 1.8-mm preparation of the fMRI data.

 

nsddata/ppdata/subjAA/func*/brainmask.nii.gz

 

The binary brain mask that was used to mask the betas (in order to save disk space).

Note that this brain mask is intentionally liberal so as to not lose brain voxels.

nsddata/ppdata/subjAA/func*/meanBBBB.nii.gz

nsddata/freesurfer/subjAA/label/[lh,rh].mean.mgz

 

This is the mean of all of the pre-processed volumes in BBBB for subject AA. BBBB 

can be '' (i.e. mean.nii.gz) which means averaged across all of the NSD core scan 

sessions; or 'FIRST5' which means averaged across the first 5 NSD core scan 

sessions (this version was used in various co-registration procedures); or 

subj01/func1mm/brainmask.nii.gz



'_sessionNN' which means the Nth NSD core scan session; or '_prffloc' which means 

the prffloc scan session.

 

nsddata/ppdata/subjAA/func*/[T1,T2,SWI,TOF]_to_func*.nii.gz

 

This is a version of the subject’s anatomical volumes that has been matched to the 

functional data space.

nsddata/ppdata/subjAA/func*/signaldropout.nii.gz

nsddata/ppdata/subjAA/func*/signaldropout_masked.nii.gz

nsddata/freesurfer/subjAA/label/[lh,rh].signaldropout.mgz

 

subj01/func1mm/mean.nii.gz

subj01/func1mm/T1_to_func1mm.nii.gz



These are volumes that indicate areas of EPI signal dropout. They are computed by 

dividing the T2 (T2_to_func*.nii.gz) volume by the mean pre-processed EPI volume 

(mean.nii.gz) and then scaling the resulting volume such that 1 corresponds to a 

reasonable threshold that divides “good” EPI voxels from “bad” ones (see paper for 

details). The former volume (signaldropout.nii.gz) is not masked, whereas the latter 

volume (signaldropout.nii.gz) is masked according to the aseg.nii.gz file (any voxel 

that is zero in aseg is set to zero). The masked volume can be useful for ignoring 

voxels outside of the brain.

nsddata/freesurfer/subjAA/label/[lh,rh].surfacevoxels*.mgz

Results of the ‘surface voxels’ visualization technique (Kay et al., NeuroImage, 

2019). We sampled 1-, 2-, and 3-mm volumetric test patterns onto surface vertices 

using nearest-neighbor interpolation.

subj01/func1mm/signaldropout.nii.gz

subj05/label/lh.surfacevoxels_layerB3.mgz (3-



nsddata/ppdata/subjAA/func*/validBBBB.nii.gz

nsddata/freesurfer/subjAA/label/[lh,rh].valid.mgz

 

This is a binary mask indicating which voxels contain valid data in BBBB for subject 

AA. (Invalid data occurs when motion or spatial distortion cause missing data for 

voxels.) BBBB can be '' (i.e. valid.nii.gz) which means average of valid mask across 

all NSD core scan sessions; or '_sessionNN' which means the Nth NSD core scan 

session; or '_prffloc' which means the prffloc scan session.

 

In valid.nii.gz, the values consists of fractions between 0 and 1. For the most part, 

data were acquired for the entire brain in every session. However, there are a few 

sessions in which a small amount of brain was cut off. These cases can be detected 

by finding voxels in valid.nii.gz with values less than 1.0.

subj01/func1mm/valid.nii.gz (superimposed on 



Functional data (pRF, fLoc)
This covers analysis results for the pRF and fLoc experiments conducted in the initial 7T 

prffloc scan session.

Results from the prf experiment

The pre-processed fMRI time-series data from the prf experiment (6 runs, 300-s each) 

was fit with a pRF model using nonlinear optimization (the CSS model; see Kay et al., J 

Neurophys, 2013). Note that the model was constrained to have non-negative gain.

The results of the fitting are provided in the following files. Note that in each of the files, 

NaN values are possible and indicate either missing data or voxels outside of the brain 

mask.

Both volume-based and surface-based versions of the results are available. Volume-

based results are located at

nsddata/ppdata/subjAA/func*/prf_BBB.nii.gz

and surface-based results are located at

nsddata/freesurfer/subjAA/label/[lh,rh].prfBBB.mgz

where BBB refers to different quantities. To create surface-based versions, we take the 

1-mm volume-based prf results and map them to the left and right hemisphere cortical 

surfaces (linear interpolation onto the 3 depth surfaces, average across depth).

Below, we document each of the BBB quantities.

angle

This contains, for each voxel, the polar angle of the pRF center. Values are between 

0 and 360 (Cartesian coordinate system where 0 corresponds to the right horizontal 

meridian, 90 corresponds to the upper vertical meridian, etc.) and are in units of 

degrees. NaNs exist in the case that pRF eccentricity is exactly 0.



eccentricity

This contains, for each voxel, the eccentricity of the pRF center. Values are non-

negative and are in units of degrees of visual angle. Values are capped at 1000.

exponent

This contains, for each voxel, the fitted pRF exponent. Values are non-negative and 

are capped at 1000.

subj01/label/lh.prfangle.mgz

subj01/label/lh.prfeccentricity.mgz

subj01/label/lh.prfexponent.mgz



gain

This contains, for each voxel, the gain of the pRF model. The interpretation is that 

this is the amplitude reached for a stimulus that completely covers the full extent of 

the pRF. Values are non-negative, in percent signal change, and are capped at 

1000%.

meanvol

This contains, for each voxel, the mean EPI intensity (in the prf data). Values are in 

raw scanner units and generally fall in the range 0 to 4095.

R2

This contains, for each voxel, the variance explained by the pRF model. Values 

generally lie between 0% and 100%, but other values are possible. Values are 

capped at the low end at -1000%.

subj01/label/lh.prfgain.mgz

subj01/label/lh.prfmeanvol.mgz



 

size

This contains, for each voxel, the estimated pRF size. Values are non-negative and 

are in units of degrees of visual angle. The definition of pRF size is one standard 

deviation of a Gaussian that describes the response of the model to point stimuli. 

Note that this definition of pRF size takes into account the nonlinear summation 

behavior of the pRF model and is not the same as the “sigma” parameter used in the 

pRF model (see additional notes below). Values are capped at 1000 deg.

Technical notes on pRF size, sigma, and exponent
The stimulus apertures were prepared at 200 pixels x 200 pixels (corresponding to 

8.4° x 8.4° visual extent) and were subsequently used in the model fitting.

The underlying pRF model used to fit the data is given as follows:

subj01/label/lh.prfR2.mgz

subj01/label/lh.prfsize.mgz

1 modelfun = @(params,stim) ...

2 posrect(params(4)) * ...



In the above code, params(4) is the gain parameter, stim refers to the apertures 

(formatted as volumes x pixels*pixels), params(1) is the position of the pRF 

center expressed in terms of row indices (1-200 corresponds to the middle of the 

1st row (top) to the middle of the 200  row (bottom)), params(2) is the position 

of the pRF center expressed in terms of column indices (1-200 corresponds to 

the middle of the 1st column (left) to the middle of the 200  column (right)), 

params(3) is the standard deviation of the Gaussian (expressed in pixel units), 

and params(5) is the exponent parameter.

Note that the results written to the .nii.gz files are not the raw parameters 

mentioned above, but instead are the parameters that have been transformed to 

more meaningful units (e.g. degrees of visual angle).

Note that the prf_size.nii.gz file that is provided does not reflect the sigma 

parameter as used in the model code above, but rather sigma/sqrt(exponent). The 

motivation behind dividing sigma by sqrt(exponent) is to produce a measure of pRF 

size that takes into account the nonlinear behavior induced by the compressive 

power-law nonlinearity. Specifically, sigma/sqrt(exponent) is one standard deviation 

of a Gaussian that describes how the model would respond to a point-like stimulus 

that is moved around in the visual field.

Here is some example code that starts with the prf_XXX.nii.gz outputs that are 

provided with NSD and transforms these into a format that follows the model 

implementation:

3 (stim *

vflatten(makegaussian2d(200,params(1),params(2),abs(params(3)),a

bs(params(3))) / (2*pi*abs(params(3))^2))) .^

posrect(params(5));

4

th

th

1 prfangle = 15; % degrees

2 prfecc = 2; % degrees visual angle

3 prfexpt = 0.2;

4 prfsize = 4; % degrees visual angle

5

6 sigma = prfsize*sqrt(expt); % sigma parameter in degrees

visual angle

7 sigmapx = sigma * (200/8.4); % sigma parameter in pixel

units



For all the gory details, you can find the code that performed the pRF analysis in 

analysis_prf.m (provided in the nsddatapaper github repository).

Results from the floc experiment

The pre-processed fMRI time-series data from the floc experiment (6 runs, 312-s each) 

was analyzed using a GLM. The results are provided in the files detailed below. Note that 

in each of the files, NaN values are possible and indicate either missing data or voxels 

outside of the brain mask.

 

For convenience, we already compute various contrasts. Keep in mind that what we call 

"domains" is a higher hierarchical organizational scheme of the "categories". For 

example, the domain of 'faces' includes both the 'adult' and 'child' categories. We 

compute contrasts for each of the 5 domains (see 

nsddata/experiments/floc/domains.tsv), yielding values that quantify how large the 

response is to stimuli from a given domain compared to all other stimuli. We also compute

contrasts for each of the 10 categories (see nsddata/experiments/floc/categories.tsv), 

yielding values that quantify how large the response is to stimuli from a given category 

compared to all other stimuli EXCLUDING stimuli in the category that is paired with the 

given category. For example, “facestval” contrasts responses to the domain of faces 

(adult and child faces aggregated) against responses to all other stimuli; “adulttval” 

contrasts responses to the category of adult faces against responses to all other stimuli 

excluding child faces; “childtval” contrasts responses to the category of child faces 

against responses to all other stimuli excluding adult faces.

 

8 rindex = (1+200)/2 - (prfecc*sin(prfangle/180*pi) * (200/8.4));

% pRF y-position in row pixel units

9 cindex = (1+200)/2 + (prfecc*cos(prfangle/180*pi) * (200/8.4));

% pRF x-position in column pixel units

10 gau = makegaussian2d(200,rindex,cindex,sigmapx,sigmapx); %

Gaussian image that peaks at 1. This Gaussian corresponds to the

Gaussian used in the modeling function (prior to the scale

normalization, dot-product with the stimulus, exponentiation,

and the gain).

https://github.com/kendrickkay/nsddatapaper/
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/floc/domains.tsv
https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/experiments/floc/categories.tsv


Each contrast is expressed using two different metrics. “tval” is a conventional t-statistic 

that results from performing a two-sample t-test. “anglemetric” is a metric that, in contrast 

to “tval”, does not depend on the amount of data collected, and is simply the angle in the 

Cartesian coordinate plane made by the mean of the two groups being compared. For 

example, the point (A,B) plots the response to A along the x-axis and the response to B 

along the y-axis. Values for “anglemetric” range between -180 and 180 degrees and the 

zero point corresponds to the situation where A==B and A and B are positive. Thus, 0° 

indicates equal response to A and B; positive values going up to 180° proceed clockwise 

and indicate a preference for A; negative values going down to -180° proceed 

counterclockwise and indicate a preference for B.

Both volume-based and surface-based versions of the results are available. Volume-

based results are located at

nsddata/ppdata/subjAA/func*/floc_BBB.nii.gz

and surface-based results are located at

nsddata/freesurfer/subjAA/label/[lh,rh].flocBBB.mgz

where BBB refers to different quantities. To create surface-based versions, we take the 

1-mm volume-based floc results and map them to the left and right hemisphere cortical 

surfaces (linear interpolation onto the 3 depth surfaces, average across depth).

Below, we document each of the BBB quantities.

 

DDDtval

This contains, for each voxel, the t-value corresponding to contrasting domain DDD 

(or category DDD) against other stimuli.



DDDanglemetric

This contains, for each voxel, the angle metric corresponding to contrasting domain 

DDD (or category DDD) against other stimuli.

betas

subj02/label/lh.flocfacestv

subj02/label/lh.flocfacesa



This contains, for each voxel, 6 trials x 10 categories = 60 beta weights. The GLM 

incorporates six separate regressors for each category (coding distinct trials), 

producing six separate beta weights for each category. These distinct beta weights 

are used to compute the t-values and the angle metrics.

 

meanvol

This contains, for each voxel, the mean EPI intensity (in the floc data). Values are in 

raw scanner units and generally fall in the range 0 to 4095.

R2

This contains, for each voxel, the variance explained by the GLM model. Values 

generally lie between 0% and 100%, but other values are possible.

subj02/label/lh.flocmeanv



subj02/label/lh.flocR2.mgz



Functional data (NSD)
This covers GLM results for the NSD experiment. The goal of the main GLM analysis of 

the NSD data was to estimate single-trial betas (BOLD response amplitudes) for each 

voxel.

File format issues for betas

The files that contain NSD betas are very large. The units of the prepared betas are 

percent signal change. However, for some of ther NSD data files that we have prepared, 

the betas have been multiplied by 300 and converted to int16 format to reduce space 

usage. Upon loading the beta files, the values should be immediately converted back to 

percent signal change by casting to decimal format (e.g. single or double) and dividing by 

300.

 

For volume-based format of the betas, two versions have been prepared:

NIFTI (.nii.gz). These data are in int16 format. A liberal brain mask has been applied 

such that non-brain voxels have been zeroed-out in order to save disk space. The .gz 

indicates that the files are compressed (to save disk space). The advantage of .nii.gz 

format is that it is standard and easy-to-use, but the disadvantage is that the files 

must be uncompressed when loading and must be completely loaded into memory.

HDF5 (.hdf5). These data are in int16 format. '/betas' is X voxels x Y voxels x Z 

voxels x 750 trials. A liberal brain mask has been applied such that non-brain voxels 

have been zeroed-out. This file is in HDF5 format (with a specific chunk size of [1 1 1 

750]) in order to enable very fast random access to small parts of the data file. A 

disadvantage of this format is that the file is uncompressed and therefore large in 

size.

 

Here is an example of how to use MATLAB to quickly load all 750 single-trial betas 

associated with 5 voxels from a single scan session, using h5read.m.

data = h5read('betas_session01.hdf5','/betas',[10 10 10 1],[1 1 

5 750]);

Note that these are 1-indexed (due to MATLAB’s convention), and hence we are 

loading the 10th, 11th, 12th, 13th, and 14th voxels along the third dimension.



Results of a simple ON-OFF GLM

Besides the single-trial GLM, the NSD were also analyzed with a simple ON-OFF GLM in 

order to derive some useful quantities.

nsddata/ppdata/subjAA/func*/onoffbeta_sessionBB.nii.gz

This is the beta (in percent signal change units) obtained, for session BB, for a 

simple GLM model that describes experiment-related variance with a simple ON-

OFF predictor (one condition, canonical HRF).

nsddata/ppdata/subjAA/func*/onoffbeta.nii.gz

This is the average (using nanmean.m) of the onoffbeta across all sessions.

 

nsddata/ppdata/subjAA/func*/R2_sessionBB.nii.gz

This is the voxel-wise variance explained (0-100) for the simple ON-OFF GLM model 

for session BB.

subj01/func1mm/onoffbeta_session10.nii.gz



nsddata/ppdata/subjAA/func*/R2.nii.gz

nsddata/freesurfer/subjAA/label/[lh,rh].R2.mgz

This is the voxel-wise variance explained, averaged across all sessions (using 

nanmean.m).

Results of single-trial GLM

For single-trial GLM, we analyzed the time-series data from the NSD experiment using 3 

different GLM models. The identifiers for these models are:

betas_assumehrf (beta version 1; b1) - GLM in which a canonical HRF is used

betas_fithrf (beta version 2; b2) - GLM in which the HRF is estimated for each 

voxel

betas_fithrf_GLMdenoise_RR (beta version 3; b3) – GLM in which the HRF is 

estimated for each voxel, the GLMdenoise technique is used for denoising, and ridge 

regression is used to better estimate the single-trial betas.

The interpretation of the betas obtained from these GLMs is that they are the BOLD 

response amplitudes evoked by each stimulus trial relative to the baseline signal level 

present during the absence of a stimulus (“gray screen”). Note that betas are expressed 

in percent signal change by dividing the full set of amplitudes obtained for a voxel by the 

subj01/func1mm/R2_session10.nii.gz



grand mean intensity observed for that voxel in a given scan session and then multiplying 

by 100. 

 

Betas are provided both in the subject-native volume spaces (func1mm and 

func1pt8mm), a subject-native surface space (nativesurface) as well as in group spaces 

(fsaverage and MNI). Details on the nativesurface and group spaces are provided later.

 

Note that to save disk space, the ‘betas_assumehrf’ version is provided for the 

func1pt8mm space but not for the func1mm space.

 

nsddata_betas/ppdata/subjAA/func*/betas_*/betas_sessionBB.[nii.gz,hdf5]

 

These are single-trial betas (that have been multiplied by 300 and converted to 

integer format). The betas are in chronological order. There are 750 betas since 

there are 750 stimulus trials in each scan session (after concatenating all 12 runs). 

The betas correspond to the data acquired in session BB for subject AA.

 

nsddata_betas/ppdata/subjAA/func*/betas_*/meanbeta.nii.gz

nsddata_betas/ppdata/subjAA/func*/betas_*/meanbeta_sessionBB.nii.gz

 

For each session, the mean of all single-trial betas is calculated 

(meanbeta_sessionBB); then, this mean is averaged across all scan sessions 

(meanbeta). The result is a volume that indicates the voxel-wise average single-trial 

beta obtained for subject AA. (Please note that although the file format is single, the 

values must still be divided by 300 in order to return to percent signal change units.)



nsddata_betas/ppdata/subjAA/func*/betas_*/R2.nii.gz

nsddata_betas/ppdata/subjAA/func*/betas_*/R2_sessionBB.nii.gz

 

This contains the variance explained by the GLM model in each session 

(R2_sessionBB), and the average of this quantity across all sessions (R2). Please 

note that the R2 values for the ‘betas_assumehrf’ and ‘betas_fithrf’ models are 

probably not very useful given that these models are very flexible and can essentially 

fit nearly all of the variance in a given time-series (even if the time-series has no 

reliable stimulus-evoked responses). In contrast, the R2 for the 

‘betas_fithrf_GLMdenoise_RR’ may be useful given that the ridge-regression 

regularization does shrink the model according to the response reliability that 

appears to be in the data for each given voxel. NaNs are possible in 

R2_sessionBB.nii.gz for invalid voxels. For R2.nii.gz, we compute the mean using 

nanmean.

subj05/func1mm/betas_fithrf/meanbeta.nii.gz



nsddata_betas/ppdata/subjAA/func*/betas_*/R2run_sessionBB.nii.gz

 

This contains the variance explained by the GLM model calculated separately for 

each run in a given session.

 

nsddata_betas/ppdata/subjAA/func*/betas_*/HRFindex_sessionBB.nii.gz

nsddata_betas/ppdata/subjAA/func*/betas_*/HRFindexrun_sessionBB.nii.gz

 

Index of the chosen HRF for each voxel (integer between 1 and 20). This is 

estimated for each run in a session (HRFindexrun_sessionBB). The final HRF used 

to analyze the entire session of data is determined by combining results across runs 

(HRFindex_sessionBB).

subj05/func1mm/betas_fithrf_GLMdenoise_RR/R2.nii.gz



nsddata_betas/ppdata/subjAA/func*/betas_*/FRACvalue_sessionBB.nii.gz

 

The fractional regularization level chosen for each voxel. Note that invalid voxels (e.g. 

outside of brain) are given a fraction of 1.

Single-trial GLM results in nativesurface format

subj05/func1mm/betas_fithrf_GLMdenoise_RR/HRFindex_se

subj05/func1mm/betas_fithrf_GLMdenoise_RR/FRACvalue



 

nsddata_betas/ppdata/subjAA/nativesurface/betas_*/[lh,rh].betas_sessionBB.h

df5

 

These files contain betas in the native FreeSurfer surface space for a given subject. 

They are saved in .hdf5 format to allow for very rapid access to subsets of the 

available vertices.

 

To generate these betas, we take the 1-mm subject-native volume betas, resample 

via cubic interpolation onto the subject-native cortical surfaces (which exist at 3 

different depths), and average the resulting betas across depths. The resulting 

matrices have dimensions vertices x trials (and are separated by hemisphere).

 

Note that the betas are saved in int16 format and are multiplied by 300. In the case of

missing data in a given scan session (i.e., due to head motion, a spatial location is 

moved out of the imaging field-of-view), it is possible that vertices have their betas 

set to all zeros. (There are very few instances where data are missing for cortical 

surface vertices; see nsddata/information/knowndataproblems.txt for more 

information. To detect such cases, one can simply check in each scan session 

whether all betas for a given vertex are equal to 0.) The ‘ChunkSize’ for the .hdf5 files 

is [1 T] where T is the total number of trials; this makes loading of all of the trials for 

single vertex (or small group of vertices) very fast.

 

Here is an example of how to use MATLAB to quickly load all 750 single-trial betas 

associated with the first 100 vertices from a single scan session.

 

data = h5read(‘lh.betas_session01.hdf5','/betas',[1 1],[100 

750]);

 

Note that the indices in MATLAB are 1-based.

Single-trial GLM results in group spaces 
(fsaverage, MNI)
 

https://natural-scenes-dataset.s3-us-east-2.amazonaws.com/nsddata/information/knowndataproblems.txt


The primary advantage of the subject-native spaces is that they provide the highest-

resolution version of the NSD data. However, group analyses may be of interest, and one 

may want to transform the NSD data to group spaces prior to analysis. (Note that in 

theory, one can perform analyses of subject-native data and then transform to group 

spaces at the very end of the analysis process; this will likely give similar but not identical 

results.)

 

The group space versions of the betas are obtained by taking the betas in the subject-

native 1-mm volume space and then resampling the betas to the group spaces (more 

details on the resampling procedures for fsaverage and MNI is provided below). Thus, 

there is some additional interpolation (and loss of resolution) inherent in the group-space 

betas.

 

nsddata_betas/ppdata/subjAA/fsaverage/betas_*/[lh,rh].betas_sessionBB.mgh

 

These files contain betas in the FreeSurfer fsaverage space. To generate these 

betas, we start with the subject-native surface format (i.e. take the 1-mm subject-

native volume betas, resample via cubic interpolation onto the subject-native cortical 

surfaces (which exist at 3 different depths), average the resulting betas across 

depths), but then we additionally map via nearest-neighbor interpolation to the 

fsaverage surface. Note that the betas are saved in decimal format and are in 

percent signal change units (i.e. they are not multiplied by 300). In the case of 

missing data, it is possible that betas will have NaNs. Here is a simple example: 

a1 = load_mgh('lh.betas_session04.mgh');

>> size(a1)

ans =

      163842           1           1         750

 

nsddata_betas/ppdata/subjAA/MNI/betas_fithrf/betas_sessionBB.nii.gz

 

These files contain betas in MNI space. To generate these betas, we take the 1-mm 

subject-native volume betas and resample them via cubic interpolation into MNI 

space. Note that values are in int16 format and are multiplied by 300. Note that 

voxels with invalid data for a given scan session (either because data was missing 

from the subject-native volume or because the location is outside of the subject-

native brain mask) will have their betas set to all zeros. Finally, note that to save disk 



space, we provide only the ‘betas_fithrf’ version of the betas in MNI space (we do not 

include ‘betas_assumehrf’ nor ‘betas_fithrf_GLMdenoise_RR’).

 

nsddata_betas/ppdata/subjAA/MNI/betas_fithrf/valid_sessionBB.nii.gz

 

These files correspond to betas_sessionBB.nii.gz and indicate which voxels contain 

valid data for each given scan session.

Noise ceiling
 

Noise ceiling estimates have been computed based on the trial-to-trial reliability of the 

beta weights. In essence, the more repeatable the response across repeated 

presentations of an image, the more variance in the response can be attributed to a 

stimulus-related signal. These noise ceiling estimates are useful for putting an upper 

bound on the amount of variance that can be explained/predicted in a given voxel’s (or 

vertex’s) beta weights. Formal description of the statistical theory behind the noise ceiling 

calculation can be found in the NSD data paper.

 

nsddata_betas/ppdata/subjAA/func*/betas_*/ncsnr.nii.gz

nsddata_betas/ppdata/subjAA/fsaverage/betas_*/[lh,rh].ncsnr.mgh

nsddata_betas/ppdata/subjAA/nativesurface/betas_*/[lh,rh].ncsnr.mgh

These files provide the noise ceiling signal-to-noise ratio (ncsnr) for each voxel (or 

vertex). These ncsnr values are computed on basis of all of the beta weights 

obtained in all NSD scan sessions. Values are generally between 0 and 0.6 but can 

go higher (a subset of voxels/vertices will be exactly 0, and this is expected behavior 

given the nature of the procedure). Invalid voxels (e.g. outside the brain) are given a 

value of NaN. The ncsnr can be easily converted into noise ceilings (see below). The 

"ncsnr_split1" and "ncsnr_split2" files reflect calculations of the ncsnr value from two 

independent splits of the images available for each given subject.



Conversion of ncsnr to noise ceiling percentages

In the NSD data paper, we explain that the noise ceiling (NC) can be expressed as:

where sigma_signal is the standard deviation of the signal and sigma_noise is the 

standard deviation of the noise. But how can this be computed based on knowledge of 

the noise ceiling signal-to-noise ratio (ncsnr)? Before deriving that result, consider the 

fact that the user may wish to average together responses across several trials 

conducted for each image. By averaging, the user is effectively reducing the variance of 

the noise. Since we are assuming that the noise is Gaussian-distributed, the effective 

noise variance becomes:

where n is the number of trials that are averaged together. We can now re-write the noise 

ceiling as:

Dividing the numerator and denominator by sigma_noise , we obtain

which further reduces to

subj05/func1mm/betas_fithrf_GLMdenoise_R

2



This shows how the noise ceiling for a given voxel can be computed from its ncsnr value.

One complication is that one might be using a preparation of the data in which different 

images have different numbers of trials that are averaged together. To flexibly deal with 

any potential scenario, we can use a weighted average to pool variance estimates across 

different images and re-write the noise ceiling equation as:

where A is the number of data points that reflect 3 trials, B is the number of data points 

that reflect 2 trials, and C is the number of data points that reflect 1 trial. With some 

algebra, we can then re-write the noise ceiling equation as follows:

Notice that this equation is simply a more general version of the earlier noise ceiling 

equation.

Technical notes
The b3 betas are appropriate only for brain regions where there is some expectation 

that the BOLD response will be consistent across the repetitions of a given image. 

This is because the regularization level is based on cross-validation of responses to 

image repetitions.

Ridge regression tends to shrink betas and therefore induces bias for percent signal 

change to be closer to 0. We apply a post-hoc scale and offset to the b3 betas to 

approximately match what is observed for unregularized betas (see NSD data paper 

for details). If absolute units of percent signal change are of specific interest, the 

betas_fithrf (b2) preparation is more straightforward to interpret and is therefore 

recommended for use instead.

If one seeks to perform connectivity-based analyses that look for correlations in 

betas across voxels (or regions), there may be large differences in results comparing 

b1 and b2 against b3. The general expectation is that the GLMdenoise procedure 



(which is incorporated as part of b3) will tend to remove global signal correlations 

that may exist in the fMRI data. 

In the ncsnr values that are provided, there are occasionally high values outside the 

brain; this is likely an artifact due to an interaction between the fact that imaging 

artifacts tend to have low temporal frequencies and the specific temporal distribution 

of repeated trials in the NSD experiment.



Functional data (resting-
state)
Most users will likely want to start with the pre-processed time-series data for the resting-

state data (see Time-series data ). However, as described in the NSD data paper, we

have used a GLM to analyze the resting-state data, and the results may be of interest to 

some users. To obtain betas, we simply analyzed the resting-state data as if they were 

data acquired for the first NSD run and last NSD run in each given scan session.

Results of single-trial GLM
 

nsddata_betas/ppdata/subjAA/*/restingbetas_fithrf/

 

This contains results of the GLM analysis of the resting-state runs. Note that only the 

‘_fithrf’ GLM version of the betas are provided. The format is the same as for the 

NSD runs.

https://slite.com/api/public/notes/vjWTghPTb3/redirect
https://slite.com/api/public/notes/vjWTghPTb3/redirect
https://slite.com/api/public/notes/vjWTghPTb3/redirect


Functional data (nsdsynthetic)

The nsdsynthetic experiment
 

The nsdsynthetic experiment took place in one 7T scanning session (8 runs). The pre-

processing of the data from this experiment is essentially the same as that used for the 

NSD core experiment. The total number of volumes, after pre-processing, is 429 volumes 

in each run for the func1mm preparation (TR 1 s) and 322 volumes in each run for the 

func1pt8mm preparation (TR 1.333 s).

 

In brief, the nsdsynthetic experiment involved 8 runs, alternating between fixation runs 

and one-back runs. During the fixation runs, the subject performed a fixation task on a 

central dot; during the memory runs, the subject performed a 1-back task on the 

presented images. Each image was presented for 2 s and was followed by a 2-s gap 

before the next trial. There are a total of 284 distinct images. The stimuli and trial ordering 

in the 8 runs was exactly the same for all subjects (including the 1-back trials). In each 

run, there were a total of 93 stimulus trials (as well as blank trials). The 93 stimulus trials 

consisted of 83 regular stimulus trials plus 10 special 1-back trials (in which the 

presented stimulus was identical to the previously presented stimulus). There were a total 

of 93 x 8 = 744 stimulus trials conducted in the scan session.

 

The 284 images are described in detail in the NSD synthetic data paper. In brief, the 

following general description can be given to the images: white noise, white noise with a 

large block size, pink noise, natural scenes, upside-down versions of these scenes, 

Mooney versions of these scenes, line-drawing versions of these scenes, contrast-

modulated natural scenes (4 scenes x 5 contrast levels (100%, 50%, 10%, 6%, 4%) = 20 

images), phase-coherence-modulated natural scenes (4 scenes × 4 coherence levels 

(75%, 50%, 25%, 0%) = 16 images), single words (2 word lengths × 5 positions × 4 

words = 40 images), spiral gratings varying in orientation and spatial frequency (112 

images), and chromatic noise varying in hue (68 images).

For the GLM analysis, we provide “fithrf” and “fithrf_GLMdenoise_RR” versions of single-

trial betas. All beta weights reflect the response to a stimulus duration of 2 s, which is 



slightly different from the NSD core experiment (in which each stimulus was 3-s long). 

Each scan session generates a total of 744 beta weights.

 

For the “fithrf_GLMdenoise_RR” analysis, it is necessary to deem some of the trials as 

“repeats” of other trials (so that cross-validation can be performed). For this analysis, we 

kept the different tasks (fixation, memory) separate --- we did not assume that the 

response to an image was the same across the tasks. There are some instances in which 

the presented image is repeated exactly (and under the same task). These contributed to 

what was used for cross-validation. In addition, we presumed that for some of the 

images, we could group the images into groups of 4. Specifically, we made groups of 4 

from images 1:12 and 105:284. For example, the spiral images naturally come in groups 

of 4, as the only difference in each group of 4 is just a phase shift. Finally, we treated the 

special 1-back trials as distinct and used separate one-shot regressors for those trials: in 

other words, the 1-back trials did not enter the cross-validation process. Ultimately, the 

designation of certain trials as repeats is used only to determine the number of 

GLMdenoise regressors to use and to determine the regularization parameter in the 

ridge-regression procedure.

 

nsddata/experiments/nsdsynthetic/nsdsynthetic_expdesign.mat

 

Contents:

<masterordering> is 1 x 744 with the sequence of trials (indices relative to the 

284 images)

<stimpattern> is 1 session x 8 runs x 107 trials. Elements are 0/1 indicating 

when stimulus trials actually occur.

 

Note: masterordering is 1 x 744 indicating the temporal sequence of 284-ids shown 

to each subject. This sequence refers only to the stimulus trials (ignoring the blank 

trials and the rest periods at the beginning and end of each run).

 

Note: All of these indices are 1-based indices.

Note that the number of repetitions of each image is complex. Users interested in, 

e.g., computing noise ceilings, should carefully take into account the differing number 

of trials of each image.



nsddata/experiments/nsdsynthetic/nsdsyntheticimageinformation.csv

This .csv file provides convenient names and groupings for the NSD synthetic 

images. The first column (Image number) indicates 1-index numbering for the 284 

images. The second column (Image) provides a short unique name for each image. 

The third column (Image subclass number) provides 1-index numbering for a first-

level grouping of the images. The fourth column (Image subclass) is a text label 

associated with each image subclass. The fifth column (Image class number) 

provides 1-index numbering for a second-level grouping of the images (multiple 

image subclasses make a single image class). The sixth column (Image class) is a 

text label associated with each image class.

nsddata/experiments/nsdsynthetic/nsdsynthetic_wordlist.txt

This text file provides the 40 distinct words used for the word stimuli in the 

NSDsynthetic image set. The words are provided in the order that they appear in the 

image set.

nsddata_stimuli/stimuli/nsdsynthetic/nsdsynthetic_stimuli.hdf5

 

This is an .hdf5 file that contains the first 220 images (1 through 220) prepared for 

the nsdsynthetic experiment. <imgBrick> is 3 channels x 1360 pixels x 714 pixels x 

220 images and is in uint8 format. These images were shown on a gray background 

with RGB value (126,110,108). There are 714 rows and 1360 columns. The reason 

for the non-square shape of the image is that a few of the word images extend far to 

the left and far to the right.

 

The images in the .hdf5 file (combined with the “colorstimuli” files described below) 

constitute the official list of the 284 images. When we use the term ‘284-ID’, this 

refers to an index into this list of 284 images (1-indexed).

 

nsddata_stimuli/stimuli/nsdsynthetic/nsdsynthetic_colorstimuli_subjAA.hdf5

 

This is the same format as the nsdsynthetic_stimuli.hdf5 file. The difference is that 

there are 64 images. After concatenating the 220 images with the 64 images, the 

result is 284 images. Hence, this file contains images 221 through 284.



 

There is a separate .hdf5 file created for each of the NSD subjects (based on color 

calibration that was tailored to each subject). We act as if there are 284 distinct 

images, even though in reality the last 64 images are slightly different for each 

subject (based on a flicker photometry calibration).

 

nsddata/stimuli/nsdsynthetic/nsdsynthetic/

nsddata/stimuli/nsdsynthetic/nsdsynthetic_subjAA/

 

In these folders, there are standard RGB .png files (uint8, 714 pixels x 1360 pixels x 

3 channels). Each file is named "nsdsyntheticBBB.png" where BBB indicates the 

284-ID (1-indexed). The “nsdsynthetic” folder contains 220 images, while the 

“nsdsynthetic_subjAA” folders contain the remaining 64 images tailored to subject 

AA.

 

NOTE: These .png files for the nsdsynthetic experiment have been prepared by 

taking the square-root of the values before writing to disk. The motivation is that 

when viewing these .png files on a standard display, the images will resemble what 

the subjects actually saw. The .png files should not be treated as quantitative; for 

quantitative versions of the stimuli, one should use the .hdf5 files.

 

nsddata/ppdata/subjAA/func*/mean_nsdsynthetic.nii.gz

nsddata/ppdata/subjAA/func*/valid_nsdsynthetic.nii.gz

nsddata_betas/ppdata/subjAA/func*/nsdsyntheticbetas_*/betas_nsdsynthetic.

[nii.gz,mat]

nsddata_betas/ppdata/subjAA/func*/nsdsyntheticbetas_*/HRFindex_nsdsynth

etic.nii.gz

nsddata_betas/ppdata/subjAA/func*/nsdsyntheticbetas_*/HRFindexrun_nsdsy

nthetic.nii.gz

nsddata_betas/ppdata/subjAA/func*/nsdsyntheticbetas_*/FRACvalue_nsdsynt

hetic.nii.gz

nsddata_betas/ppdata/subjAA/func*/nsdsyntheticbetas_*/meanbeta_nsdsynth

etic.nii.gz

nsddata_betas/ppdata/subjAA/func*/nsdsyntheticbetas_*/R2_nsdsynthetic.nii.

gz



nsddata_betas/ppdata/subjAA/func*/nsdsyntheticbetas_*/R2run_nsdsynthetic.

nii.gz

nsddata_timeseries/ppdata/subjAA/func*/timeseries/timeseries_nsdsynthetic_r

unCC.nii.gz

nsddata_timeseries/ppdata/subjAA/func*/motion/motion_nsdsynthetic_runCC.t

sv

nsddata_betas/ppdata/subjAA/fsaverage/nsdsyntheticbetas_*/[lh,rh].betas_ns

dsynthetic.mgh

nsddata_betas/ppdata/subjAA/nativesurface/nsdsyntheticbetas_*/[lh,rh].betas

_nsdsynthetic.hdf5

nsddata_betas/ppdata/subjAA/MNI/nsdsyntheticbetas_*/betas_nsdsynthetic.ni

i.gz

nsddata_betas/ppdata/subjAA/MNI/nsdsyntheticbetas_*/valid_nsdsynthetic.nii

.gz

 

The contents of these files are the same as described elsewhere. Note that MNI 

versions of the betas are provided only for the “fithrf” preparation.

 

Special notes on luminance issues
Bear in mind that the main NSD experiment uses standard computer RGB images. 

When these were shown on the BOLDscreen display (which is linearized), we 

specifically used a squaring gamma response such that the images are delivered as 

they are intended.

In contrast, the stimuli in the NSD synthetic experiment are prepared as "vision 

science" images and are not intended to be shown with a squaring gamma response. 

Thus, they were delivered as-is on the BOLDscreen display (which is linearized).

For some analyses, it may be important to correctly handle the luminance of these 

two different sets of stimuli. One approach is to convert the RGB images of the main 

NSD experiment by squaring them; doing so will ensure that the result is comparable 

to the images of the NSD synthetic experiment (which should be used as-is without 

squaring). Another approach is to use the RGB images of the main NSD experiment 

as-is, and apply a square-root transformation ot the images of the NSD synthetic 

experiment.



Diffusion data
This section covers the measurements and pre-processing of diffusion-weighted magnetic 

resonance imaging data (dMRI) prepared for the NSD dataset. 

Data were preprocessed using publicly available processing pipelines available on 

brainlife.io. Preprocessing pipelines were used to remove artifacts as well as possible; see 

note at the end. After artifact removal/minimization, a series of additional brainlife.io 

pipelines were used to generate and share data derivatives, including minimally 

preprocessed dMRI data, tractography, and network outputs.

Diffusion (dMRI) data collection
The four diffusion-weighted acquisitions were combined into two runs of diffusion data 

(referred to as ‘run_1’, ‘run_2’). The two diffusion runs were combined (stacked in the 4th 

dimension) before being processed. Data preprocessing included susceptibility-weighted, 

motion, and eddy correction. 

Cloud processing via brainlife.io
All processing was performed on the reproducible, open cloud-based service known as 

brainlife.io. Brainlife.io orchestrates large-data storage, processing via open-service code 

applications (apps), and high-speed large computing resources to quickly and reproducibly 

process neuroimaging data. 

All of the code and pipelines used for processing the data described below can be found on 

brainlife.io and from there on GitHub.com. A table at the end of this document provides all 

references to the pipeline used for data processing and generation.

The output files generated are further described below.

Diffusion-weighted imaging (dMRI). 

The preprocessed dMRI data were used as the basis for all further modeling and analyses. 

This includes NIFTI images and the corrected b-values (bvals) and b-vectors (bvecs) in 

FSL format. These NIFTIs are in alignment with and have the same slice dimensions and 

voxel size as the official 0.8-mm T1w images provided with NSD (see ). 

All NIFTI-based volume derivatives from the dMRI data maintain the same properties in 

regards to slice and voxel sizes. (Note that in our preprocessing, we drop the very last 

  Structural data 

http://brainlife.io/
http://brainlife.io/
http://brainlife.io/
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acquired volume; hence there is a one-volume mismatch between the number of volumes in 

the raw data (99, 99, 100, 100 for the four raw diffusion acquisitions) and the number of 

volumes in the preprocessed data (98 for 'Run 1' (which combines the first two 

acquisitions) and 99 for 'Run 2' (which combines the second two acquisitions).)

nsddata_diffusion/ppdata/subjAA/run_*/dwi.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dwi.bvecs  

nsddata_diffusion/ppdata/subjAA/run_*/dwi.bvals  

Signal-to-noise ratio (SNR) quantification. 

Following preprocessing and separation of the dMRI data into its component runs, the 

signal-to-noise ratio (SNR) was computed using a brainlife.io App implementing methods 

available on the scientific library DIPy.org. The output of this process is a .csv file 

describing the SNR found across the x-, y-, or z-directions in diffusion-weighted volumes 

and the SNR across the non-diffusion weighted volumes:

nsddata_diffusion/ppdata/subjAA/run_*/snr/snr.csv  

dMRI brain mask. 

A brain mask was generated with an App implementing FSL BET and used for all dMRI 

signal modeling and analyses purposes. The brain mask was generated using the 

preprocessed and combined dMRI data following preprocessing. The same mask was 

used for all subsequent processing steps:

nsddata_diffusion/ppdata/subjAA/brainmask/mask.nii.gz  

subj07/run_1/dwi/dwi.nii.gz

https://doi.org/10.25663/brainlife.app.120
http://dipy.org/
https://doi.org/10.25663/brainlife.app.163


Visual area parcellation. 

A parcellation of the visual areas was implemented using the 180 multi-modal cortical Atlas 

(Glasser et al, 2016). The Atlas and areas were imported into dMRI volume space. The 

areas were used to segment the optic radiation and to generate area-to-area connectivity 

matrices. A key.txt   file is provided also. The file includes the assignment of the voxels 

into the NIFTI files to the indices of the areas in the parcellation. A label.json   file is also 

provided to includes important information for the parcellation nifti.

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-

parcellation/parcellation.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-parcellation/key.txt  

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-

parcellation/label.json  

subj07/brainmask/mask.nii.gz



Diffusion signal modeling and data derivatives

The Diffusion-Tensor Model (DTI; Le Bihan et al., Journal of Magnetic Resonance Imaging, 

2001), Diffusion Kurtosis Imaging (DKI; Rosenkrantz et al. Journal of Magnetic Resonance 

Imaging, 2015), and Neurite Orientation Dispersion Diffusion Imaging (NODDI; Zhang et al. 

Neuroimaging 2012) models were fit to the dMRI data.

Diffusion Tensor Imaging (DTI). 

The fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity maps from 

the DTI model were generated using methods implementing in MRTrix3 (JD Tournier et al. 

Neuroimage 2019) as implemented in a brainlife.io App.

nsddata_diffusion/ppdata/subjAA/run_*/dti/ad.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dti/fa.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dti/md.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dti/rd.nii.gz  

Additional parameters were also returned byMRTrix3 given the multi-shell nature of the 

data.

nsddata_diffusion/ppdata/subjAA/run_*/dti/cs.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dti/cl.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dti/cp.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dti/kurtosis.nii.gz  

subj07/run_1/visual-area-parcellation/parc.nii.gz

subj07/run_1/dti/fa.nii.gz

https://doi.org/10.25663/brainlife.app.297


Diffusion Kurtosis Imaging (DKI). 

The implementation of DKI provided by the library DIPy.org was used via a brainlife.io 

App to generate DKI model parameter estimates. Both DTI measures (fractional 

anisotropy, mean diffusivity, axial diffusivity, radial diffusivity), as well as proper DKI 

measures (axial kurtosis, geodesic anisotropy, mean kurtosis, radial kurtosis), maps were 

generated. 

nsddata_diffusion/ppdata/subjAA/run_*/dki/ad.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dki/fa.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dki/md.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dki/rd.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dki/ak.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dki/ga.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dki/mk.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/dki/rk.nii.gz  

Neurite Orientation Dispersion Density Imaging (NODDI). 

The NODDI implementation available in the library AMICO was used via a brainlife.io App 

to generate all parameter estimates. The neurite density, orientation dispersion, and 

isotropic volume fraction maps were generated. Two fits of the NODDI model were applied 

per dMRI run. The parallel diffusivity parameter (d//) was changed by run/fit. 

The first model fitting was performed with d// = 1.7 x 10 mm /s, which is designed for 

fitting in deep white matter. In the data, this is marked as noddi-wm directory. 

subj07/run_1/dki/mk.nii.gz

-3 2

http://dipy.org/
https://doi.org/10.25663/bl.app.9
https://doi.org/10.25663/bl.app.9
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The second model fitting was performed with d// = 1.7 x 10 mm /s which was found to 

be the optimal value for gray matter mapping as identified in Fukutomi et al, 2018. This is 

designated with a noddi-cortex directory. The files within each directory have the same 

name, and thus we describe one set of directories below.

nsddata_diffusion/ppdata/subjAA/run_*/noddi-{}/ndi.nii.gz   

# neurite density index map for either the white matter (wm) or cortex fits

nsddata_diffusion/ppdata/subjAA/run_*/noddi-{}/odi.nii.gz   

# orientation dispersion index map for either the white matter (wm) or cortex fits

nsddata_diffusion/ppdata/subjAA/run_*/noddi-{}/isovf.nii.gz   

# isotropic volume fraction map for either the white matter (wm) or cortex fits

Constrained Spherical Deconvolution (CSD). 

CSD model fits for diffusion tractography across multiple spherical harmonic orders 

(L =2, 4, 6, and 8) using MRTrix3.

nsddata_diffusion/ppdata/subjAA/run_*/csd/lmax2.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/csd/lmax4.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/csd/lmax6.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/csd/lmax8.nii.gz  

nsddata_diffusion/ppdata/subjAA/run_*/csd/response.txt  

-3 2

subj07/run_1/noddi-wm/odi.nii.gz

max



subj07/run_1/csd/lmax8.nii.gz



Tractography. 

Whole-brain diffusion tractography was performed using a brainlife.io App implementing 

an advanced version of MRTrix3’s anatomically-constrained tractography (ACT) 

methodology (McPherson and Pestilli, Communications Biology, 2021). The multi-shell 

constrained spherical deconvolution (CSD) model was used to identify fiber orientation 

distributions. Multiple CSD model orders (L ) were run, namely 6 and 8, and used to 

separately generate tractograms. Each tractogram was generated with 1.5 million 

streamlines. The two tractograms were merged into a single tractogram containing 3 

million streamlines implementing a simplified version of Ensemble Tractography (Takemura 

et al., PloS Computational Biology, 2018). 

subj07/run_1/csd/response.txt

max

https://doi.org/10.25663/brainlife.app.297
https://doi.org/10.25663/brainlife.app.305


The optic radiations were identified using a novel brainlife.io App (L 8) using parallel 

transport tractography implemented in the software library Trekker (Aydogan et al., IEE 

TMI, 2021). To identify the termination of the Optic Radiation, the LGN as identified with 

Freesurfer and V1 as identified by the multimodal parcellation were used. 5,000 

streamlines were generated for each hemispheric and optic radiation. Left and right Optic 

Radiations were then merged to generate a single tractogram containing 10,000 

streamlines.

nsddata_diffusion/ppdata/subjAA/run_*/track/track-lmax6.tck  

nsddata_diffusion/ppdata/subjAA/run_*/track/track-lmax8.tck  

nsddata_diffusion/ppdata/subjAA/run_*/track/track-merged.tck  

subj07/run_1/track/track-merged.nii.gz

max 

https://doi.org/10.25663/brainlife.app.226


nsddata_diffusion/ppdata/subjAA/run_*/track/track-optic-radiation.tck  

Major white matter tracts segmentation. 

The 61 major white matter tracts were segmented using the 3,000,000 whole-brain 

tractograms. The segmentation was performed using a brainlife.io App implementing an 

improved version of rules provided by the White Matter Query Language (WMQL; 

Wassermann et al., Brain Structure and Function, 2016). The segmentation outputs are 

organized into MatLab files (.mat) containing two cell structures: 

Following the tracts segmentation, a brainlife.io App was used to remove outlier 

streamlines from each tract. Outliers streamlines were defined as those with at least one 

node x,y,z coordinates more than 3 standard deviations away from the median white matter 

tract trajectory (i.e., median x,y,z tract coordinates). The resulting outliers' removed white 

matter tracts classification structure was returned ( classification-cleaned.mat ). 

Finally, a classification structure was generated for the optic radiation tractogram 

( classification-optic-radiation.mat ), along with a version with outliers removed 

( classification-optic-radiation-cleaned.mat ).

Note that poor segmentations of the cinguli were returned in both the 

classification-wholebrain and classification-wholebrain-cleaned.mat  files 

for subj02, subj03, subj07, and subj08.

nsddata_diffusion/ppdata/subjAA/run_*/tract-segmentation/classification-

wholebrain.mat  

nsddata_diffusion/ppdata/subjAA/run_*/tract-segmentation/classification-

wholebrain-cleaned.mat  

nsddata_diffusion/ppdata/subjAA/run_*/tract-segmentation/classification-

optic-radiation.mat  

nsddata_diffusion/ppdata/subjAA/run_*/tract-segmentation/classification-

optic-radiation-cleaned.mat  

White Matter Tract Name: the name of each white matter tract (1 x 61 tracts), 1.

White matter Tract-streamline Index: the integer index of each tract for every 

streamline in the whole-brain, merged, tractogram (1 x 3,000,000 streamlines). 

2.

https://doi.org/10.25663/brainlife.app.188
https://doi.org/10.25663/brainlife.app.195


Tract Profiles and macrostructural statistics. 

Mapping of DTI, DKI, and NODDI metrics along the core of the segmented whole-brain 

white matter tracts and the optic radiation using Tract Profiles (Yeatman et al, 2012), and 

quantitative statistics of macrostructure including tract volume, length, and streamline 

count provided in a single .csv file following format of AFQ-Browser (Yeatman/Rokem). As 

brainlife.io treats DTI and DKI as the same datatypes (with differentiating datatype tags), 

profilometry was performed separately on DTI and DKI measures, but NODDI values were 

computed in both. These two are designated with a specific directory, specifically tract-

statistics/dti and tract-statistics/dki. Within each directory includes the profiles for the whole-

brain segmentation following streamline outlier removal and the optic radiation 

segmentation following streamline outlier removal.

nsddata_diffusion/ppdata/subjAA/run_*/tract-statistics/*/tractmeasures-

wholebrain.csv  # whole-brain segmentation statistics derived from either DTI or DKI 

models and NODDI

nsddata_diffusion/ppdata/subjAA/run_*/tract-statistics/*/tractmeasures-

optic-radation.csv  # optic radiation segmentation statistics derived from either DTI or 

DKI models and NODDI

Visual area networks. 

subj07/run_1/tract-segmentation/classification-optic-radiation-clean.mat

http://brainlife.io/


The merged 3,000,000 whole-brain tractogram was used in combination with the visual 

areas defined by the multi-modal cortical atlas to build a connectivity matrix of the visual 

system using a brainlife.io App implementing MRTrix3's method to build networks. 

Multiple network measures were generated. Both standard network measures such as fiber 

count, density, and length as well as more advanced measures derived from the DTI, DKI, 

and NODDI model were generated. 

Note that the DTI and DKI matrices have been seperated into distinct directories 

(i.e. visual-area-networks/dti and visual-area-networks/dki). Both directories 

contain the NODDI matrices generated during the generation of the DTI and DKI 

matrices. The same networks were then normalized by density. A final network of 

density normalized by length was also computed. The streamline weights defined 

by SIFT2 and node assignments are also provided.

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-networks/*/density.csv  

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-networks/*/length.csv  

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-networks/*/count.csv  

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-networks/*/{}_mean.csv  

# DTI, DKI, NODDI measures

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-

networks/*/{}_mean_density.csv   # DTI, DKI, NODDI measures normalized by density

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-networks/*/weights.csv  

nsddata_diffusion/ppdata/subjAA/run_*/visual-area-

networks/*/assignments.csv  

Measures of cortical white matter properties. 

Diffusion measures derived from DTI, DKI, and NODDI models were mapped to the 

‘midthickness’ surface derived from FreeSurfer following procedures outlined in Fukutomi 

et al, 2018. Each diffusion model mapping is designated by a cortexmap-{}  directory. 

Within each model directory contains a main directory titled cortexmap. Within this directory 

are three sub-directories containing various surface gifti (gii) files: func, label, surf . 

Func contains the diffusion measures for each model mapped to the cortical 

midthickness surface, including temporal signal-to-noise ratio (tSNR). 

Label contains the Desikan-Killiany (aparc.a2009s) atlas converted to GIFTI. 

https://doi.org/10.25663/brainlife.app.394


Surf contains all of the surfaces generated during the procedures, including (but not 

limited to) the midthickness surface and inflated versions of the midthickness surface. 

The remaining surfaces are surfaces derived from Freesurfer converted to gifti that 

were necessary for generating the midthickness surface and for mapping the diffusion 

model data to the midthickness surface. 

Note, the func.gii metric surface files, and the GIFTI derivatives, may not load 

well into FreeSurfer but will load into Connectome Workbench. To ease the 

burden on users who are more accustomed to FreeSurfer's outputs, .mgh 

versions of the metric files are also provided. The GIFTI versions of the pial, 

white, and .label files are simple conversions of the FreeSurfer outputs using 

mris_convert. The midthickness surface GIFTI surface, to which the dMRI 

measures of microstructure were mapped, is nearly identical, although derived 

slightly differently, to the LayerB2 files described in .  However, 

this only matters if a user wants to replicate the cortex mapping analysis, as the 

number of vertices between the *func.gii files and the Freesurfer surfaces are the 

same.

nsddata_diffusion/ppdata/subjAA/run_*/cortexmap/func/*/*h.{}.func.gii   or 

*.mgh   # hemispheric diffusion measure mapped to midthickness surface in gifti and 

Freesurfer datatypes

nsddata_diffusion/ppdata/subjAA/run_*/cortexmap/label/*h.aparc.a2009s.na

tive.label.gii   # hemispheric Desikan-Killiany (aparc.a2009s) atlas in gifti

nsddata_diffusion/ppdata/subjAA/run_*/cortexmap/surf/*h.midthickness.nat

ive.surf.gii  # hemispheric midthickness surface in gifti

nsddata_diffusion/ppdata/subjAA/run_*/cortexmap/surf/*h.midthickness.inf

lated.surf.gii  

# hemispheric inflated midthickness surface in gifti

nsddata_diffusion/ppdata/subjAA/run_*/cortexmap/surf/*h.midthickness.ver

y_inflated.surf.gii   # hemispheric inflated midthickness surface in gifti

  Structural data 

https://slite.com/api/public/notes/5jIyL2i7YB/redirect
https://slite.com/api/public/notes/5jIyL2i7YB/redirect
https://slite.com/api/public/notes/5jIyL2i7YB/redirect


Statistics of cortical midthickness mapped diffusion measures. 

Mapping of DTI, DKI, and NODDI metrics to the cortical mid thickness surface within both 

the Desikan-Killiany (aparc.a2009s) and 180 multi-modal cortical node atlases outputted to 

.csv files is compatible with the format proposed by AFQ-Browser (Yeatman et al., Nature 

subj07/run_1/cortexmap (FA mapped)



Communications 2017). As brainlife.io treats DTI and DKI as the same datatypes (with 

differentiating datatype tags), profilometry was performed separately on DTI and DKI 

measures, but NODDI values were computed in both. These two are designated with a 

specific directory, specifically cortexmap-statistics/func/dti  and cortexmap-

statistics/func/dki.  Within each directory includes the number of non-zero vertices 

(COUNT_NONZERO), minimum (MIN), maximum (MAX), average (MEAN), median 

(MEDIAN), mode (MODE), and standard deviation (STDEV) of each diffusion-based 

measure within each parcel found in the Desikan-Killiany (aparc.a2009s; aparc) and 180 

multi-modal cortical node (hcp-mmp; parc) atlases.

nsddata_diffusion/ppdata/subjAA/run_*/cortexmap-

statistics/*/aparc_{}.csv   # summary statistic for each DTI or DKI, and every 

NODDI, measure in every parcel in the aparc.a2009s atlas

nsddata_diffusion/ppdata/subjAA/run_*/cortexmap-statistics/*/parc_{}.csv  

# summary statistic for each each DTI or DKI, and every NODDI, measure in every parcel 

in the aparc.a2009s atlas

Colormap for visual-area parcellation

Below is a table of the ROI parcellations and colormap used to generate the visual area 

networks and images found in the NSD data paper. Note these are not the exact colors as 

the colors from the HCP_MMP parcellation.

HCP-MMP Parcel Color (HEX) HCP-MMP Parcel Color (HEX)

lh.v1 #000000 rh.v1 #1CE6FF

lh.vmv1 #FFFF00 rh.vmv1 #FF34FF

lh.mst #FF4A46 rh.mst #008941

lh.v6 #006FA6 rh.v6 #A30059

lh.v2 #FFDBE5 rh.v2 #0000A6

lh.vmv2 #7A4900 rh.vmv2 #63FFAC

lh.v3 #B79762 rh.v3 #8FB0FF

lh.vmv3 #004D43 rh.vmv3 #997D87

http://brainlife.io/


lh.v4 #5A0007 rh.v4 #809693

lh.v8 #FEFFE6 rh.v8 #1B4400

lh.fef #4FC601 rh.fef #3B5DFF

lh.pef #4A3B53 rh.pef #FF2F80

lh.v3a #61615A rh.v3a #BA0900

lh.v7 #6B7900 rh.v7 #00C2A0

lh.ips1 #FFAA92 rh.ips1 #FF90C9

lh.ffc #B903AA rh.ffc #D16100

lh.v3b #DDEEFFFF rh.v3b #000035

lh.lo1 #7B4F4B rh.lo1 #A1C299

lh.lo2 #3000018 rh.lo2 #0AA6D8

lh.pit #013349 rh.pit #00846F

lh.mt #372101 rh.mt #FFB500

lh.mip #C2FFED rh.mip #A079BF

lh.pres #CC0744 rh.pres #C0B9B2

lh.pros #C2FF99 rh.pros #001E09

lh.pha1 #00489C rh.pha1 #6F0062

lh.pha3 #0CBD66 rh.pha3 #EEC3FF

lh.te1p #456D75 rh.te1p #B77B68

lh.tf #7A87A1 rh.tf #788D66

lh.te2p #885578 rh.te2p #FAD09F

lh.pht #FF8A9A rh.pht #D157A0

lh.ph #BEC459 rh.ph #456648

http://lh.mt/
http://rh.mt/
http://lh.tf/
http://rh.tf/
http://lh.ph/
http://rh.ph/


Visual white matter parcel-color correspondence for visual white matter network 

analyses. HCP-MMP parcel ID and Color (hex) correspondence for scatterplots in 

Results Figure 5b,c. This is also the order of the nodes found in the network matrices in 

Results Figure 5b.

Preprocessing applications implemented via brainlife.io

lh.tpoj2 #0086ED rh.tpoj2 #886F4C

lh.tpoj3 #34362D rh.tpoj3 #B4A8BD

lh.dvt #00A6AA rh.dvt #452C2C

lh.pgp #636375 rh.pgp #A3C8C9

lh.ip0 #FF913F rh.ip0 #938A81

lh.v6a #575329 rh.v6a #00FECF

lh.pha2 #B05B6F rh.pha2 #8CD0FF

lh.v4t #3B9700 rh.v4t #04F757

lh.fst #C8A1A1 rh.fst #1E6E00

lh.v3cd #7900D7 rh.v3cd #A77500

lh.lo3 #6367A9 rh.lo3 #A05837

lh.vvc #6B002C rh.vvc #772600

Application Github repository Open Service DOI Git branch

Tissue type 

segmentation

https://github.com/brai

nlife/app-mrtrix3-5tt 

https://doi.org/10.2566

3/brainlife.app.239 

binarize-v1.0

Visual area parcellation https://github.com/brai

nlife/app-

roiGenerator/ 

https://doi.org/10.2566

3/brainlife.app.411 

visual-white-m

glasser-dwi-v

dMRI preprocessing https://github.com/brai

nlife/app-

FSLTopupEddy

https://doi.org/10.2566

3/bl.app.287  

cuda-v1.0

dMRI-T1 Registration v1.0

http://brainlife.io/
https://github.com/brainlife/app-mrtrix3-5tt
https://github.com/brainlife/app-mrtrix3-5tt
https://doi.org/10.25663/brainlife.app.239
https://doi.org/10.25663/brainlife.app.239
https://github.com/brainlife/app-roiGenerator/
https://github.com/brainlife/app-roiGenerator/
https://github.com/brainlife/app-roiGenerator/
https://doi.org/10.25663/brainlife.app.411
https://doi.org/10.25663/brainlife.app.411
https://github.com/brainlife/app-FSLTopupEddy
https://github.com/brainlife/app-FSLTopupEddy
https://github.com/brainlife/app-FSLTopupEddy
https://doi.org/10.25663/brainlife.app.287
https://doi.org/10.25663/brainlife.app.287


https://github.com/brai

nlife/app-epi-t1-

registration

https://doi.org/10.2566

3/brainlife.app.286

SNR Calculation https://github.com/dav

hunt/app-

snr_in_cc/tree/plot 

https://doi.org/10.2566

3/bl.app.120 

plot

Brain mask Generation https://github.com/brai

nlife/app-FSLBET

https://doi.org/10.2566

3/brainlife.app.163

dwi

NODDI model fit https://github.com/brai

n-life/app-noddi-amico 

https://doi.org/10.2566

3/brainlife.app.365 

1.3

Diffusion Kurtosis Fit https://github.com/dipy

/bl_apps_dipy_fit_dki 

https://doi.org/10.2566

3/bl.app.9 

1.1.1

Constrained Spherical 

Deconvolution Fit

https://github.com/bac

aron/app-mrtrix3-act 

https://doi.org/10.2566

3/brainlife.app.238 

csd_generati

Whole-brain 

Tractography

https://github.com/bac

aron/app-mrtrix3-act 

https://doi.org/10.2566

3/brainlife.app.297 

1.3

Merging Tractography 

Files

https://github.com/bac

aron/app-mergeTCK 

https://doi.org/10.2566

3/brainlife.app.305 

two-tck

Optic radiation 

Tractography

https://github.com/brai

nlife/app-trekker-roi-

tracking 

https://doi.org/10.2566

3/brainlife.app.226 

optic-radiatio

Structural Connectome https://github.com/brai

nlife/app-sift2-

connectome-

generation 

https://doi.org/10.2566

3/brainlife.app.394 

sift2_v1.2_ce

uro

White Matter Anatomy 

Segmentation

https://github.com/brai

nlife/app-wmaSeg 

https://doi.org/10.2566

3/brainlife.app.188 

3.9

Remove Tract Outliers https://github.com/brai

nlife/app-

removeTractOutliers 

https://doi.org/10.2566

3/brainlife.app.195 

1.3

Tract Profiles https://github.com/brai

n-life/app-

tractanalysisprofiles 

https://doi.org/10.2566

3/brainlife.app.361 

1.13

Cortex Tissue Mapping v1.2-snr-inpu

https://github.com/brainlife/app-epi-t1-registration
https://github.com/brainlife/app-epi-t1-registration
https://github.com/brainlife/app-epi-t1-registration
https://doi.org/10.25663/brainlife.app.286
https://doi.org/10.25663/brainlife.app.286
https://github.com/davhunt/app-snr_in_cc/tree/plot
https://github.com/davhunt/app-snr_in_cc/tree/plot
https://github.com/davhunt/app-snr_in_cc/tree/plot
https://doi.org/10.25663/brainlife.app.120
https://doi.org/10.25663/brainlife.app.120
https://github.com/brainlife/app-FSLBET
https://github.com/brainlife/app-FSLBET
https://doi.org/10.25663/brainlife.app.163
https://doi.org/10.25663/brainlife.app.163
https://github.com/brain-life/app-noddi-amico
https://github.com/brain-life/app-noddi-amico
https://doi.org/10.25663/brainlife.app.365
https://doi.org/10.25663/brainlife.app.365
https://github.com/dipy/bl_apps_dipy_fit_dki
https://github.com/dipy/bl_apps_dipy_fit_dki
https://doi.org/10.25663/bl.app.9
https://doi.org/10.25663/bl.app.9
https://github.com/bacaron/app-mrtrix3-act
https://github.com/bacaron/app-mrtrix3-act
https://doi.org/10.25663/brainlife.app.238
https://doi.org/10.25663/brainlife.app.238
https://github.com/bacaron/app-mrtrix3-act
https://github.com/bacaron/app-mrtrix3-act
https://doi.org/10.25663/brainlife.app.297
https://doi.org/10.25663/brainlife.app.297
https://github.com/bacaron/app-mergeTCK
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https://github.com/brainlife/app-trekker-roi-tracking
https://github.com/brainlife/app-trekker-roi-tracking
https://github.com/brainlife/app-trekker-roi-tracking
https://doi.org/10.25663/brainlife.app.226
https://doi.org/10.25663/brainlife.app.226
https://github.com/brainlife/app-sift2-connectome-generation/tree/sift2_v1.0
https://github.com/brainlife/app-sift2-connectome-generation/tree/sift2_v1.0
https://github.com/brainlife/app-sift2-connectome-generation/tree/sift2_v1.0
https://github.com/brainlife/app-sift2-connectome-generation/tree/sift2_v1.0
https://doi.org/10.25663/brainlife.app.394
https://doi.org/10.25663/brainlife.app.394
https://github.com/brain-life/app-tractclassification
https://github.com/brain-life/app-tractclassification
https://doi.org/10.25663/brainlife.app.188
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Description and web-links to the open-source code and open cloud services used in the 

processing of this dataset.

Additional dMRI data preprocessing and data 
limitations.
The version of the diffusion derivatives that we provide online have some changes with 

respect to pre-processing compared to what is demonstrated in the NSD data paper. This 

was done to improve the quality of the diffusion derivatives with respect to strong slice-

motion-eddy interactions in the raw dMRI data.

The preprocessing changes involved using only FSL's Topup and Eddy for preprocessing. 

It is important to note that although this change in the preprocessing corrected a significant 

amount of the artifact, it may have completely rid the data of the artifact. See screenshots 

for examples. Following preprocessing, the preprocessed combined dMRI data were 

aligned to the anatomical (T1w) image and split into the subsequent runs, and all further 

processing was performed individually on each run separately.

Example of regions where updated preprocessing improved artifact correction.

https://github.com/brai

nlife/app-cortex-tissue-

mapping 

https://doi.org/10.2566

3/brainlife.app.379 

Cortical Summary 

Statistics

https://github.com/brai

nlife/app-cortex-tissue-

mapping-stats 

https://doi.org/10.2566

3/brainlife.app.383 

v1.1

https://github.com/brainlife/app-cortex-tissue-mapping
https://github.com/brainlife/app-cortex-tissue-mapping
https://github.com/brainlife/app-cortex-tissue-mapping
https://doi.org/10.25663/brainlife.app.379
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Example of regions where updated preprocessing did not completely correct 

artifact.

Example of reduced artifact following updated preprocessing. FA map of subj05 from first version of 

Example of subject where preprocessing did not completely alleviate artifact. FA map of subj05 from first 



ROIs
The NSD dataset comes with a variety of regions of interest (ROIs). Some ROIs are 

derived from atlases and are automatically determined, whereas other ROIs reflect 

manual definition based on data from each subject.

Surface-derived ROIs

Some ROIs are generated from surface-based representations of the data. These ROIs 

include:

HCP_MMP1 is the Glasser et al., Nature, 2016 atlas.

Kastner2015 is the Wang et al., Cerebral Cortex, 2015 atlas.

nsdgeneral is a general ROI that was manually drawn on fsaverage covering voxels 

responsive to the NSD experiment in the posterior aspect of cortex.

corticalsulc is a folding-based atlas defined based on the curvature of fsaverage 

(sulci, gyri). It labels major sulci and some gyri throughout the whole cortex.

streams is an anatomical atlas that labels various “streams” in visual cortex. It is 

largely based on fsaverage folding but also takes into account the b3 noise ceiling 

results to ensure that the regions generally cover where there are stimulus-related 

signals. More details are provided below.

prf-visualrois is a collection of manually drawn ROIs based on results of the prf 

experiment. These ROIs consist of V1v, V1d, V2v, V2d, V3v, V3d, and hV4. These 

ROIs extend from the fovea (0° eccentricity) to peripheral cortical regions that still 

exhibit sensible signals in the prf experiment given the limited stimulus size (this 

means up to about ~5-6° eccentricity).

prf-eccrois is a collection of manually drawn ROIs that cover the exact same cortical

extent as the prf-visualrois ROIs. These ROIs consist of ecc0pt5, ecc1, ecc2, ecc4, 

and ecc4+, and indicate increasing “concentric” ROIs that cover up to 0.5°, 1°, 2°, 

4°, and >4° eccentricity.

floc-faces is a collection of manually drawn ROIs based on results of the floc 

experiment. These ROIs consist of OFA, FFA-1, FFA-2, mTL-faces ("mid temporal 

lobe faces"), and aTL-faces ("anterior temporal lobe faces"). These ROIs were the 

result of (liberal) thresholding at t > 0 (flocfacestval).



floc-words is a collection of manually drawn ROIs based on results of the floc 

experiment. These ROIs consist of OWFA, VWFA-1, VWFA-2, mfs-words ("mid 

fusiform sulcus words"), and mTL-words ("mid temporal lobe words"). These ROIs 

were the result of (liberal) thresholding at t > 0 (flocwordtval).

floc-places is a collection of manually drawn ROIs based on results of the floc 

experiment. These ROIs consist of OPA, PPA, and RSC. These ROIs were the result

of (liberal) thresholding at t > 0 (flocplacestval).

floc-bodies is a collection of manually drawn ROIs based on results of the floc 

experiment. These ROIs consist of EBA, FBA-1, FBA-2, and mTL-bodies ("mid 

temporal lobe bodies"). These ROIs were the result of (liberal) thresholding at t > 0 

(flocbodiestval).

Note that for the floc-faces, floc-words, and floc-bodies ROIs, not all subjects have all of 

these ROIs in every hemisphere.

Please note that the floc-related ROIs are quite liberal (given the threshold of t > 0) and 

will look quite "large" relative to what one may be typically used to. It is a good idea to 

carefully visualize the ROIs; you can easily whittle down the ROIs using a more stringent 

threshold if you desire.

The ROIs listed above are initially defined in surface space. For convenience, we have 

also created volumetric versions of the ROIs. Values of -1 indicate non-cortical voxels in 

the case of ROIs in volume format. Values of 0 indicate non-labeled vertices/voxels. 

Positive integers indicate labelings for vertices/voxels.

When surface-based ROIs are converted to volume format, there is an implicit parameter 

that controls the spatial extent of the volume version. We attempted to create volume 

ROIs that are not too liberal and not too conservative.

Note that although surface-defined ROIs in floc-faces, floc-words, floc-places, and floc-

bodies are guaranteed to be t > 0, after conversion to volume space, this constraint may 

not be entirely still true. If you use the volume versions, you may want to consider further 

shrinking down these ROIs.

Volume-derived ROIs



Some ROIs are generated from volume-based representations of the data. These ROIs 

include:

thalamus provides manual segmentation of thalamic regions: LGN, SC, and pulvinar 

(several subdivisions). Regions were defined in each hemisphere by an expert. 

Definition was based mostly on T1 anatomical data, but for the pulvinar, MNI-based 

results from other datasets were projected to each subject to aid ROI definition. Note 

that as a matter of definition, the ventral pulvinar is most correlated with early visual 

cortex; the dorsal lateral pulvinar is most correlated with the attention network; and 

the dorsal medial pulvinar is most correlated with the default-mode network. 

Additional information: LGN and SC were defined based on T1 and T2 image 

contrast. For the ventral pulvinar, the extent of the pulvinar was defined based on T1 

and T2 contrast and then constrained to the ventral lateral portion based on the 

extent of the two ventral pulvinar maps reported in Arcaro et al., Journal of 

Neuroscience, 2015. The dorsolateral pulvinar was based on the average correlation 

with IPS maps; and the dorsomedial pulvinar was based on average correlation with 

precuneus (as reported in Arcaro et al. Nature Communications 2018).

MTL provides manual segmentation of various regions in the medial temporal lobe, 

including hippocampal subfields. A expert human annotator used the raw high-

resolution T2 volumes and manually segmented regions according to Berron et al., 

NeuroImage Clinical, 2017 for each of the 8 NSD subjects. These ROI labelings 

were then co-registered to the official isotropic T2 volume space and processed. 

Also, note that ROI labels are mutually exclusive across hemispheres (i.e. every voxel is 

either assigned to the left hemisphere, right hemisphere, or neither).

ROI files

For convenience, ROI files have been prepared in multiple spaces. ROI files are available 

in functional spaces (func1pt8mm, func1mm) as well as anatomical spaces (anat). For 

ROIs in anatomical space, we provide ROIs at 0.8-mm anatomical resolution. ROI files 

are also available in surface space (FreeSurfer .mgz).

nsddata/ppdata/subjAA/*/roi/[lh,rh].EEE.nii.gz

 

These are volumes providing integer labels for ROI EEE, generated separately for 

each hemisphere.



 

nsddata/ppdata/subjAA/*/roi/EEE.nii.gz

 

These are volumes providing integer labels for ROI EEE, combining across 

hemispheres.

nsddata/ppdata/subjAA/anat/roi/other/*.nii.gz

 

subj01/func1pt8mm/roi/lh.Kastner2015.nii.gz

subj01/func1pt8mm/roi/prf-eccrois.nii.gz



The thalamus and MTL segmentations are originally drawn at 0.5-mm; for 

completeness, we provide here the original anat0pt5 version of these segmentations, 

as well as an anat1pt0 version of these segmentations.

nsddata/freesurfer/*/label/[lh,rh].EEE.mgz

 

These are surface files providing integer labels for ROI EEE.

nsddata/freesurfer/*/label/EEE.mgz.{ctab,txt}

 

This is a text file specifying the meaning of the labels in surface-based ROI EEE. 

(The same labels apply to volume versions of the ROI.) In other words, this is the 

critical text file that tells you what each of the integer labels means in terms of ROI 

names.

prf-visualrois:

V1d,V1v,V2d,V2v,V3d,V3v - dorsal and ventral subdivisions of V1, V2, 

and V3

hV4 - human V4

prf-eccrois:

ecc0pt5,ecc1,ecc2,ecc4,ecc4+ - eccentricity-restricted regions within 

early visual areas V1, V2, and V3

floc-faces:

OFA - occipital face area

subj01/label/lh.prf-



FFA-1 - posterior section of fusiform face area

FFA-2 - anterior section of fusiform face area

mTL-faces - face-selective region in middle portion of temporal lobe

aTL-faces - face-selective region in anterior portion of temporal lobe

floc-words:

OVWFA - occipital visual word form area

VWFA-1 - posterior section of visual word form area

VWFA-2 - anterior section of visual word form area

mfs-words - word-selective region located near the mid-fusiform sulcus

mTL-words - word-selective region in middle portion of temporal lobe

floc-places:

OPA - occipital place area

PPA - parahippocampal place area

RSC - retrospenial cortex (place-selective)

floc-bodies:

EBA - extrastriate body area (can also be referred to as LOTC-bodies 

(lateral occipitotemporal cortex))

FBA-1 - posterior section of fusiform body area (can also be referred to as 

VOTC-bodies-1 (ventral occipitotemporal cortex))

FBA-2 - anterior section of fusiform body area (can also be referred to as 

VOTC-bodies-2)

mTL-bodies - body-selective region in middle portion of temporal lobe

nsddata/templates/EEE.ctab

 

This is a text file specifying the meaning of the labels in volume-based ROI EEE. For 

example, EEE can be "thalamus" or "MTL". 

Probmap files

For convenience, we also create "probmap" (probabilistic map) results. Specifically, we 

take each manually defined cortical ROI and map these via nearest-neighbor 



interpolation to fsaverage and then compute the fraction of subjects at each vertex that 

has each individual ROI present.

nsddata/freesurfer/fsaverage/label/[lh.rh].RRR.mgz

This file consists of fractions between 0 and 1. The value indicates the fraction of 

subjects that have ROI RRR present at a given fsaverage vertex.

Other files

The following files are intermediate files created in the process of the manual 

segmentation of the MTL ROI collection.

nsddata/ppdata/subjAA/anat/HRT2/HRT2_raw.nii.gz

 

The raw high-resolution T2 volume used for MTL segmentation.

 

nsddata/ppdata/subjAA/anat/HRT2/HRT2_mask.nii.gz

 

The binary mask within which an affine transformation was optimized to match the 

official 0.5-mm T2 volume.

 

nsddata/ppdata/subjAA/anat/HRT2/MTL_rawlabels.nii.gz

 

The manually defined MTL labels (same space as the HRT2_raw.nii.gz volume).

 

fsaverage/label/rh.PPA.mgz



nsddata/ppdata/subjAA/anat/HRT2/T2matched.nii.gz

 

Given the affine transformation determined (within the HRT2_mask), this volume is 

the result of reslicing through the 0.5-mm T2 volume to match the HRT2_raw volume 

(cubic interpolation).

Additional information on the streams ROIs
    

Early visual cortex ROI:

The early visual cortex ROI was drawn as the union of the V1v, V1d, V2v, V2d, V3v 

and V3d ROIs from the Wang 2015 retinotopic atlas. Additionally, V2v and V2d were 

connected such that the part of the occipital pole typically containing foveal 

representations was also included. The same was repeated for V3v and V3d.

Intermediate ROIs:

Three intermediate ROIs were drawn corresponding to each of the three streams: 

ventral, lateral and parietal. All three ROIs border the early visual cortex ROI on the 

posterior side.

The intermediate ventral ROI was drawn to reflect the inferior boundary of hV4 from 

the Wang atlas and to include the inferior occipital gyrus (IOG), with the anterior 

border of the ROI drawn based on the anterior edge of the inferior occipital sulcus 

(IOS). 

The intermediate lateral ROI was drawn directly superior to the intermediate ventral 

ROI, with the superior and anterior borders determined as the LO1 and LO2 

boundaries from the Wang atlas.

The intermediate parietal ROI was drawn directly superior to that, reflecting exactly 

the borders of the union of V3A and V3B from the Wang atlas.

Higher-level ROIs:

Three higher-level ROIs were drawn for each of the ventral, lateral and parietal 

streams, bordering their respective intermediate ROIs on their posterior edges.



The ventral ROI was drawn to follow the anterior lingual sulcus (ALS), including the 

anterior lingual gyrus (ALG) on its inferior border and to follow the inferior lip of the 

inferior temporal sulcus (ITS) on its superior border. The anterior border was drawn 

based on the midpoint of the occipital temporal sulcus (OTS).

The lateral ROI was drawn such that the higher-level ventral ROI was its inferior 

border and the superior lip of the superior temporal sulcus (STS) was used to mark 

the anterior/superior boundary. The rest of the superior boundary traced the edge of 

angular gyrus, up to the tip of the posterior STS (pSTS). 

The parietal ROI was drawn to reflect the boundary of the lateral ROI on its inferior 

edge and to otherwise trace the borders of and include the union of IPS0, IPS1, 

IPS2, IPS3, IPS4, IPS5 and SPL1 from the Wang atlas.



Technical notes
This section contains a number of technical details that help document the NSD dataset.

Final numbers

Some of the NSD subjects did not complete all 40 planned NSD core scan sessions. 

Here we provide some useful summary statistics on what is present in the NSD dataset. 

Note that the numbers are calculated with respect to the full dataset).

How many core NSD scan sessions did each of the 8 NSD subjects complete?

[40 40 32 30 40 32 40 30]

How many distinct images were shown at least once to each subject?

[10,000 10,000 9,411 9,209 10,000 9,411 10,000 9,209]

How many distinct images were shown at least twice to each subject?

[10,000 10,000 8,355 7,846 10,000 8,355 10,000 7,846]

How many distinct images were shown all three times to each subject?

[10,000 10,000 6,234 5,445 10,000 6,234 10,000 5,445]

How many trials did each subject perform?

[30,000 30,000 24,000 22,500 30,000 24,000 30,000 22,500]

How many of the shared 1,000 images were shown at least once to each subject?

[1,000 1,000 930 907 1,000 930 1,000 907]

How many of the shared 1,000 images were shown all 3 times to every subject?

515

How many of the shared 1,000 images were shown at least 2 times to every subject?

766

How many of the shared 1,000 images were shown at least once to every subject?

907

What is the total number of distinct images, aggregated across all subjects?

70,566

What is the total number of trials, aggregated across all subjects?

213,000

Data sizes



The following are the matrix dimensions for the high-res (1.0-mm) functional data 

preparation, matrix dimensions for the standard-res (1.8-mm) functional data preparation, 

the vertex number in the left-hemisphere cortical surfaces, and the vertex number in the 

right-hemisphere cortical surfaces.

 

Subject 1      [145 186 148]  [81 104 83]    227021 226601

Subject 2      [146 190 150]  [82 106 84]    239633 239309

Subject 3      [145 190 146]  [81 106 82]    240830 243023

Subject 4      [152 177 143]  [85 99 80]     228495 227262

Subject 5      [141 173 139]  [79 97 78]     197594 198908

Subject 6      [152 202 148]  [85 113 83]    253634 259406

Subject 7      [139 170 145]  [78 95 81]     198770 200392

Subject 8      [143 184 139]  [80 103 78]    224364 224398

On the issue of valid voxels

Due to spatial distortion and/or head displacement over the course of a scan session, 

voxels on the edges of the imaged volume may not obtain a full set of data for that 

session. In pre-processing, such voxels are detected, deemed “invalid”, and are 

essentially set to 0 for the whole scan session. For the most part, brain voxels of interest 

are almost always valid.

 

The files named valid*.nii.gz provide information regarding which voxels contain valid 

data. Invalid voxels exhibit the following behavior:

timeseries*.nii.gz – Invalid voxels have pre-processed time-series data values that 

are all zeroes over the course of the entire scan session.

mean*.nii.gz – Invalid voxels have a mean intensity of 0.

R2*.nii.gz – Invalid voxels have a GLM variance explained value of NaN.

betas*.[nii.gz,hdf5] – Invalid voxels have betas that are all zeroes. (This is the result 

of the data being saved in int16 format, which converts NaNs to 0.)

meanbeta*.nii.gz – Invalid voxels have mean betas equal to 0.

onoffbeta*.nii.gz – Invalid voxels have onoffbeta weights equal to NaN.



Note that voxels outside of the brain mask are also set to 0 in the time-series data and in 

the beta weights; thus, they appear similar to invalid voxels.

Computational tips

The massive scale of the NSD dataset poses some computational challenges. Here we 

comment on some issues related to computational efficiency. 

File format choices are important. HDF5 provides fast access because it is 

uncompressed.

Pre-allocation of variables when loading data into memory is important (otherwise, 

unnecessary time costs are incurred).

Consider using 'single' or 'float' format to save memory usage.

For huge data, breaking up the analysis into chunks may be necessary in order to 

reduce memory usage (e.g., analyze one subject at a time).

In general, when loading in chunks from an HDF5 file, it is fastest to load chunks from

the last dimension. However, the HDF5 files used for the NSD betas were saved with 

ChunkSize [1 1 1 750], which means that the trials were deliberately chunked 

together when saved. This was done because in theory, one will probably want to 

always get all of the trials (from a given set of voxels). Speed benefits for the NSD 

betas would be obtained when loading chunks from the third dimension (as opposed 

to the first or second dimensions).

Vectorization of code is important (avoid for-loops if possible).

If averaging across trials for the same image, one can do this efficiently through a 

single indexing operation (e.g. an indexing matrix that is 3 trials x N images), as 

opposed to using a for-loop.

Timing issues

Here is how timing issues are dealt with in the NSD dataset:

An empirical audio check of a typical fMRI scanning run (i.e. an NSD run involving 

188 volumes at a TR of 1.6 s) indicates the following breakdown: There is 31.8 s 

from the start of scanner calibration noises to the start of the EPI noises; then, there 

is 8 s from the start of EPI noises until the start of the first actual recorded fMRI 

volume (the 8 s is due to dummy fMRI volumes); and, finally, there is 300.8 s (i.e. 

188*1.6) from the start of the first recorded fMRI volume until the end of the EPI 



noises (indicating that data collection is complete). Thus, the dummy fMRI volumes 

are already dropped and do not show up in the NSD dataset. We consider the start of

the first recorded fMRI volume to be time = 0.

The fMRI volumes are acquired at 1600 ms TR, and this is assumed to be exactly 

accurate. Empirical measurements of scanner triggers, as detected by the stimulus 

computer, indicate that the difference between successive triggers is consistently 

between 1599.95 and 1600.12 ms. Some of this variability is due to polling 

uncertainty. We believe this is good validation that the 1600 ms number can be 

trusted.

The stimulus computer controls the experiment presentation. The presentation code 

locks to the display rate of the BOLDscreen monitor, and empirical measurements of 

the duration of each 5-min (300 s) run come out to consistently between 299.955 s 

and 299.97 s. Thus, we are confident that the timing of the experimental presentation 

is highly reliable. Because these values are not exactly 300.000 s, in the pre-

processing of the fMRI data, we resample the fMRI data to a sampling rate of 

0.999878 s. (Note that 0.999878*300 = 299.9634 s.) Specifically, the high-resolution 

(func1mm) preparation of the data uses a new sampling rate of 0.999878 s, while the 

low-resolution (func1pt8mm) preparation of the data uses a new sampling rate of 

(0.999878)*(4/3) = 1.3331707 s. These numbers are quite close to 1 s and 4/3 s, 

respectively, and we often abbreviate using those numbers for simplicity.

Note that the fMRI acquisition extends slightly longer than the experiment duration. 

For example, for a typical NSD run, the experiment lasts 299.9634 s, while the fMRI 

acquisition lasts 188 * 1.6 = 300.8 s. This is intentional and no cause for concern.

With respect to the pre-processing of the fMRI data, the total duration of the 

func1mm preparation of each fMRI run is 0.999878 * 301 volumes = 300.96 s. The 

total duration of the func1pt8mm preparation of each fMRI run is (0.999878)*(4/3) * 

226 volumes = 301.29 s. Notice that the two numbers are slightly different, and 

extend slightly beyond the original extent of the acquisition (1600 ms * 188 volumes =

300.8 s). This is all expected behavior, and is due to how the pre-processing code 

decides to place the final time points.

After the pre-processing of the fMRI data, it is convenient to simply interpret the fMRI 

data as being sampled at a rate of 1 s (or 4/3 s), even though that is not exactly 

accurate.

Slice acquisition order was determined from the DICOM header of the fMRI volumes. 

In the temporal pre-processing of the fMRI data, all slices were sampled to be 



coincident with the first (temporally) acquired slices. (Note that multiple slices were 

“first” because of the multiband acquisition.)

The experimental design comes in 4-s trials; thus, fMRI volumes after pre-processing 

land exactly on the onset of each trial (4 s is divisible by 1 s and by 4/3 s).

At the beginning of each run, the stimulus computer waits for a trigger to be sent by 

the MRI scanner, and once the trigger is detected, the computer starts the 

experiment. Note that there is a brief and somewhat variable (about 5-20 ms) delay 

that persists between the detection of the trigger and the first stimulus frame shown 

(e.g. due to the fixed refresh rate of the monitor). Thus, there may be a small (and 

more or less fixed) delay between the fMRI data and the stimulus frames. This seems

like a relatively minor issue: the readout of the first slice in the EPI sequence itself 

takes some time, so there is already a delay (e.g. half of the readout window) that is 

essentially being ignored here. 

The internal MR scanner clock shows some odd behavior. According to the stored 

AcquisitionTime header of the EPI DICOMs, we extracted the average duration of 

each TR volume and that number comes out to 1606.425 ms. This is surprising since 

the empirical measurements from the stimulus computer indicate that the TR (as 

reflected in the triggers that are sent by the scanner) is essentially exactly 1600 ms. 

Checks that we performed strongly suggest that, for the purposes of internal times 

recorded by the scanner in the DICOMs and in the physiological data, it does seem 

that the MR scanner believes the DICOMs come at a rate of 1606.425 ms. We found 

that under the assumptions we make when extracting the physiological data, the 

physiological data and the DICOM times are very nicely consistent with one another. 

Moreover, the number of samples that we extract corresponding to the actual fMRI 

acquisition does empirically turn out to be around 15040-15041, which is essentially 

exactly 50 Hz for a run duration of 188*1.6=300.8 s. Thus, our working interpretation 

is that (i) the correct time is being recorded by the stimulus computer; (ii) the MR 

scanner in fact achieves exactly the time requested (1600 ms TR); (iii) the MR 

scanner has some strange internal timing system that is internally consistent but 

which does not match the stimulus computer’s timing, and (iv) the user need not 

worry about the strange MR scanner timing.

FreeSurfer notes
FreeSurfer includes an internal T1 volume (e.g. mri/T1.mgz). Beware that although 

this volume contains basically the same image data as the original 0.8-mm 

anatomical volume that we provided to FreeSurfer, it has some header differences. 



Thus, if you were to load in the raw image data from the two volumes, in order to get 

them to match up, you may have to apply a specific set of flips, rotations, and shifts. 

This is because the orientation and exact positioning of the two volumes are different. 

A NIFTI-header-aware application that knows how to properly interpret the 

orientation and origin information will reveal that the two volumes are identical, in the 

sense that both volumes, when properly interpreted, are in the same position (e.g. 

(0,0,0) in millimeters corresponds to the same location in the two volumes). The 

following shows how the image data (ignoring headers) can be matched between the 

two volumes. 

Note that we have converted some of the standard FreeSurfer output volumes to 

conform to the formats used for the NSD data. For example: 

nsddata/ppdata/subj01/func1pt8mm/aseg.nii.gz

The FreeSurfer surfaces (e.g. lh.white) have coordinates that must be interpreted 

with respect to the FreeSurfer headers. This is quite tricky, and requires using the 

FreeSurfer vox2ras and vox2ras-tkr information. Here is the basic idea (see 

preprocess_nsd_calculatetransformations.m) for how we map FreeSurfer’s surface 

coordinates to a 1-based coordinate system that corresponds to the official T1 0.8-

mm anatomical volume:

newcoord = inv(M)*Norig*inv(Torig)*[tkrR tkrA tkrS 1]’ + 1

where [tkrR tkrA tkrS] are coordinates stored in the surface file, Torig is the output 

from vox2ras-tkr, Norig is the output from vox2ras, and M is the voxel-to-world 

transformation from the official T1 0.8-mm anatomical volume. The idea is that we 

first map from surface coordinates to 0-based pixel (CRS) space (i.e. inv(Torig)), 

then we map from FreeSurfer’s 0-based pixel space to physical RAS space (i.e. 

Norig), and then we map from physical RAS space to 0-based pixel space 

associated with the official T1 0.8-mm anatomical volume. Finally, we add 1 to the 

1 % load aseg

2 sourcedata = '~/nsd/nsddata/freesurfer/subj01/mri/aseg.mgz';

3 vol = cvnloadmgz(sourcedata);

4

5 % bring it to our anat0pt8 space

6 vol = flipdim(flipdim(permute(vol,[1 3 2]),3),1);

7 volB = zeros(size(vol));

8 volB(2:end,:,2:end) = vol(1:end-1,:,1:end-1);



coordinates in order to convert to 1-based pixel space (i.e. 1 means the center of the 

first voxel).

In the diffusion files (nsddata_diffusion), various cortical surfaces are provided in 

GIFTI format. The coordinates contained in these GIFTI files are "world coordinates" 

and they are identical to the surface coordinates contained in the usual FreeSurfer 

surface files after making sure to convert the surface coordinates to physical RAS 

space.

MNI notes
All NIFTI files that we write are in LPI ordering (the first voxel is Left, Posterior, and 

Inferior). This applies even to files written by nsd_mapdata in the MNI space. Note 

that this is the same as what FreeSurfer calls “RAS” ordering, since that 

nomenclature refers to which directions have increasing voxel indices.

The MNI template (1mm) (borrowed from FSL) has matrix dimensions [182 218 182] 

and is in RPI ordering (first voxel is right, posterior, inferior). The origin lies at 1-

based image coordinates (91,127,73).

NSD files provided in MNI (1mm) space have the same matrix dimensions [182 218 

182] and are in LPI ordering. The origin lies at 1-based image coordinates 

(92,127,73). Note that while the MNI template is in RPI ordering, NSD files that are 

provided in MNI space are in LPI ordering. When comparing these two types of files 

in an application that understands and respects the NIFTI header information, 

everything should be correct and in correspondence.

When using nsd_mapdata to map from MNI to some other space, note that the 

source data is expected to be in RPI ordering (since that is what the MNI 

template uses). This means that if one performs analyses of, for example, the NSD 

beta weights prepared in MNI space (which have LPI ordering), the results need to 

be flipped along the first dimension before being passed to nsd_mapdata.m.

Furthermore, when trying to map MNI source data, the data should be 

EXACTLY in the same resolution, matrix size, etc. as the MNI 1mm template. 

(For example, if your MNI source data is 2-mm, you need to bring it to 1-mm 

resolution.) There are many ways to do this; one option is resliceniftitomatch.m 

as provided in https://github.com/cvnlab/knkutils/

When using nsd_mapdata to map to MNI space, note that the output variable is 

returned to the workspace in RPI ordering. But notice that if you ask 

nsd_mapdata to write out a NIFTI file, that file has data stored in LPI ordering.

https://github.com/cvnlab/knkutils/


All NIFTI files that we write have the origin set to the exact center of the image slab. 

The only exception to this is when nsd_mapdata writes out MNI space files: in this 

case, we set the origin to match that used in the MNI template files.

Other notes
Recorded reaction times in the behavioral data have some rounding error due to the 

presentation of images at a 10 Hz rate. That is, the stimulus computer both controls 

image presentation and tries to record button presses. Approximately every 100 ms, 

the stimulus computer has to do work to present the image, and at these points in 

time, if there is a button that is pressed, it will be logged a few milliseconds late. (You 

will see this weird effect if you plot a histogram of a large number of RTs in bin widths 

of 1 ms.)

Note that the func1pt8mm and func1pt0mm have origins that are in slightly different 

places. This is because the field of view of the two preparations are different and 

because we set the origin to be the center of the image slab in both cases.

Transform files

Various coregistration procedures were performed in the pre-processing of NSD data, 

and the results of these procedures have been written out to a collection of files. 

Essentially, we have pre-computed a large number of possible mappings that the user 

might want to perform. These pre-computed transform files are used by the nsd_mapdata 

utility in order to map data from one space to another, and ordinary users should not need 

to worry about the contents of these files.

nsddata/ppdata/subjAA/transforms/

This directory contains the set of pre-computed transform files for subject AA.

Note that file format conventions vary across different software packages. Thus, 

these files are not necessarily "standard" and not necessarily compatible "off the 

shelf" with a given software package!

The basic form of a filename is "X-to-Y", indicating that this file contains information 

on how to access data from X for each location in Y. For example, "func1pt0-to-



MNI.nii.gz" is a NIFTI file with the dimensionality of the 1-mm MNI space; there are 

three volumes in this file, corresponding to three spatial dimensions; and each value 

indicates how to pull from the 1.0-mm functional space. Intuitively, this file provides 

func1pt0 coordinates in an MNI-like volume.

Our convention is to use image coordinates for volume data. For example, 1 is the 

center of the first voxel; 2 is the center of the second voxel; and 1.5 is exactly in 

between the centers of the first and second voxels. Furthermore, our convention is to 

use 1-based indexing for surface data. For example, 1 indicates the first surface 

vertex.

To conform to FreeSurfer conventions, files named like "lh.X-to-Y.mgz" indicate how 

to access data from X for each location in the left hemisphere Y surface. For 

example, "lh.func1pt8-to-layerB2.mgz" indicates, for each surface vertex in the mid-

gray left hemisphere cortical surface, how to pull data from the 1.8-mm functional 

volume.

For transform files involving fsaverage, all values are indices and not spatial locations

(since our convention is to use nearest-neighbor interpolation for fsaverage-related 

transformations).

Additional documentation can be found in 

preprocess_nsd_calculatetransformations.m.

Inaccuracy in anatomical to functional space 
transformation
We recently discovered there is a slight inaccuracy in the transformation from anatomical 

space to functional space for each given NSD subject. Specifically, in the spatial 

transformations that are pre-calculated (and used in nsd_mapdata), the transformation 

from the anatomical to functional space for a given subject was calculated with a minor 

error (the order of inverse transformations given to ANTS was flipped (see line 202 in this

function)).

Fortunately, the size of the discrepancy is quite small. See the following visualization:

https://github.com/cvnlab/nsddatapaper/blob/main/main/preprocess_nsd_calculatetransformations.m
https://github.com/cvnlab/nsddatapaper/blob/main/main/preprocess_nsd_calculatetransformations.m


For sake of consistency with existing analyses, we leave the original transformations and 

data files as-is.

Note that updating the transformation would affect some NSD data files, including: (1) the 

conversion of surface-based ROIs (e.g. Kastner2015, HCP_MMP1, nsdgeneral, 

corticalsulc, streams, floc, and prf ROIs) to EPI functional space, and (2) the warping of 

anatomical volumes to functional space (e.g. T1, T2). We suspect that the differences 

would be negligible.

This shows test1 and test2 for each of the 8 NSD subjects. test1 is the T2 matched to the EPI space 



Code
Several code resources are provided with the NSD dataset. See the nsddatapaper 

github repository for an archive of code used in the NSD data paper. Below, we 

document other resources.

nsd_mapdata
We provide a lightweight github repository:

http://github.com/kendrickkay/nsdcode/ 

This repository contains the utility nsd_mapdata.{m,py}, which helps map data between 

the various spaces used in the NSD dataset (see Spaces for imaging data ). In brief, 

transformations between various spaces (e.g. functional, anatomical, MNI, fsaverage) 

have been pre-computed, and the utility simply loads in these transformations and 

applies them to user-supplied data.

Example scripts demonstrating usage of nsd_mapdata are provided: 

examples_nsdmapdata.{m,py}. In addition, we provide a video that walks through the 

example script: https://www.youtube.com/watch?v=XeiyFEr29gA

Some notes on using nsd_mapdata:

Three types of interpolation are available: nearest-neighbor, linear, or cubic.

Be careful about the choice of interpolation. In particular, when mapping volume data 

to the cortical surface, it is easy for "holes" to occur, depending on the extent to which

valid values exist in the volume data and depending on the type of interpolation used.

In general, transformation between volume and surface spaces is lossy, in the sense 

that information loss and discretization errors are inevitable. One strategy is to 

perform analysis of the functional data fully in volume format and then transform to 

surface space at the very end (e.g. for visualization). A different strategy is to simply 

start up front with the "nativesurface" preparation (in which we have already 

transformed/interpolated the NSD betas to FreeSurfer's surface space) and then 

conduct analyses.

nsd_mapdata

https://www.youtube.com/watch?v=XeiyFEr29gA

https://github.com/kendrickkay/nsddatapaper/
https://github.com/kendrickkay/nsddatapaper/
http://github.com/kendrickkay/nsdcode
https://slite.com/api/public/notes/khB~wb7gpU/redirect
https://slite.com/api/public/notes/khB~wb7gpU/redirect
https://slite.com/api/public/notes/khB~wb7gpU/redirect
https://www.youtube.com/watch?v=XeiyFEr29gA
https://www.youtube.com/watch?v=XeiyFEr29gA


The conversion of surface data to volume format is a tricky procedure that involves 

certain assumptions. One particular method is implemented by nsd_mapdata (and is 

described in the NSD data paper), and this method was used in order to create 

volumetric versions of surface-oriented ROI labels (e.g. prf-visualrois). Other 

methods are possible.



Example text for papers
The following is a text template that may be useful for briefly describing the NSD dataset 

in a paper that uses the NSD data. Of course, you may need to modify or expand as 

necessary.

 

Natural Scenes Dataset

 

A detailed description of the Natural Scenes Dataset (NSD; 

http://naturalscenesdataset.org) is provided elsewhere {cite Allen et al., Nature 

Neuroscience, 2021}. The NSD dataset contains measurements of fMRI responses 

from 8 participants who each viewed 9,000–10,000 distinct color natural scenes 

(22,000–30,000 trials) over the course of 30–40 scan sessions. Scanning was 

conducted at 7T using whole-brain gradient-echo EPI at 1.8-mm resolution and 1.6-s 

repetition time. Images were taken from the Microsoft Common Objects in Context 

(COCO) database {cite Lin 2014}, square cropped, and presented at a size of 8.4° x 

8.4°. A special set of 1,000 images were shared across subjects; the remaining 

images were mutually exclusive across subjects. Images were presented for 3 s with 

1-s gaps in between images. Subjects fixated centrally and performed a long-term 

continuous recognition task on the images. The fMRI data were pre-processed by 

performing one temporal interpolation (to correct for slice time differences) and one 

spatial interpolation (to correct for head motion). A general linear model was then 

used to estimate single-trial beta weights. Cortical surface reconstructions were 

generated using FreeSurfer, and both volume- and surface-based versions of the 

beta weights were created.

Natural Scenes Dataset (extremely abbreviated)

The NSD dataset contains measurements of 7T fMRI responses (1.8 mm, 1.6 s) 

from 8 participants who each viewed 9,000–10,000 distinct color natural scenes 

(22,000–30,000 trials). Subjects fixated centrally and performed a long-term 

continuous recognition task on the images.

Natural Scenes Dataset Synthetic Experiment

http://naturalscenesdataset.org/


The NSD synthetic dataset is an addition to the main NSD experiment. The dataset 

contains measurements of fMRI responses from the same 8 participants of the main 

NSD experiment. Participants viewed 284 carefully controlled synthetic images in 

one additional 7T fMRI scan session. Images were presented for 2 s with 2-s gaps in 

between images. Subjects performed a fixation task and a one-back task in 

alternating runs.

 

Other snippets of text that might be useful as a template:

The dataset includes additional measures including structural (T1, T2), diffusion, and 

resting-state data.

In this paper, we used the 1.8-mm volume preparation of the NSD data and version 3 

of the NSD single-trial betas (betas_fithrf_GLMdenoise_RR).

We used the ‘nativesurface’ preparation of the NSD betas.

We used the nsd01–nsd10 scan sessions from all 8 NSD subjects.

If you make use of the NSD dataset, please cite the NSD data paper:

Allen, St-Yves, Wu, Breedlove, Prince, Dowdle, Nau, Caron, Pestilli, Charest, 

Hutchinson, Naselaris*, & Kay*. A massive 7T fMRI dataset to bridge cognitive 

neuroscience and artificial intelligence. Nature Neuroscience (2021). 

If you make use of the NSD synthetic dataset, please also cite the NSD synthetic paper:

Gifford, Cichy, Naselaris, Kay. A 7T fMRI dataset of synthetic images for out-of-

distribution modeling of vision. arXiv (2025). 

In addition, please acknowledge the NSD funding sources using wording similar to:

Collection of the NSD dataset was supported by NSF IIS-1822683 and NSF IIS-

1822929.

https://doi.org/10.1038/s41593-021-00962-x
https://doi.org/10.1038/s41593-021-00962-x
https://doi.org/10.1038/s41593-021-00962-x
https://arxiv.org/abs/2503.06286
https://arxiv.org/abs/2503.06286


FAQ

"I need help double-checking the indexing of the images (e.g. figuring out which 

images were seen by all subjects). Do you have any pointers?"

The following script might be helpful to see some examples of how to handle tricky 

indexing. Note that this is MATLAB, so the indices are generally 1-based in this 

script: 

https://github.com/cvnlab/nsddatapaper/blob/main/mainfigures/FINALNUMB

ERS/FINALNUMBERSnotes.m

Note that the full set of 40 NSD scan sessions were collected for four of the eight 

subjects but that only the first 30 or 32 NSD scan sessions were collected for the 

other four subjects. Hence, for exact numbers you must take this into account. Also, 

note that the numbers of images for which responses are available depend on 

whether you have access to all collected NSD scan sessions or not. (Remember that 

the last 3 NSD scan sessions from each subject are held-out from public release due 

to the Algonauts challenge. For example, there were actually 40 NSD scan sessions 

collected for subject 1, but only the first 37 scan sessions are publicly downloadable.)

Here is a simple example showing how to determine which of the shared 1,000 

images were seen all 3 times by all 8 subjects (assuming that the full dataset is 

downloaded). Note the subjects who had the fewest scan sessions had 30 NSD scan 

sessions. Hence, we use "30" in the code snippet below. (To figure out which of the 

shared 1,000 images were seen all 3 times by all 8 subjects within the currently 

downloadable data, you would simply substitute "27" for "30" in the code snippet 

below.)

1 temp = masterordering(1:750*30); % 750 trials per session; all 

8 subjects participated in at least the first 30 NSD scan

sessions

2 shared515 = []; % 1 x 515 vector of 1-indices. these indices

are between 1-1000.

3 for q=1:1000

4 if sum(temp==q)==3

https://github.com/cvnlab/nsddatapaper/blob/main/mainfigures/FINALNUMBERS/FINALNUMBERSnotes.m
https://github.com/cvnlab/nsddatapaper/blob/main/mainfigures/FINALNUMBERS/FINALNUMBERSnotes.m


"Can I average prf time-series data across runs? Do they have different stimulation 

protocols?"

As described in the NSD data paper, the prf experiment involved six runs acquired 

as BWBWBW (where B and W refer to multibar and wedgering run types). The 

spatial aperture pattern was identical within each run type, and hence averaging is 

reasonable (e.g. average the Bs together; average the Ws together). (However, note 

that the specific colorful texture shown at a given point in time and the precise fixation 

dot behavior are stochastic across runs and are therefore not exactly identical across 

runs.)

"I am getting "access denied" errors and/or I am getting 403 errors from AWS ("fatal 

error: An error occurred (403) when calling the HeadObject operation: Forbidden"). 

Can you help?"

A subset of the NSD data files (e.g. nsdsynthetic, nsdimagery) is forbidden from 

being downloaded at this point (see 'Held-out data' on the  

page).

"I noticed that there are some voxels/signals outside of the brain. Is there something 

wrong?"

There are two factors at play here. (1) In our pre-processing strategy, we intentionally

erred on the side of being conservative, in the sense of not aggressively using a brain

mask and potentially removing signals of interest. In other words, the brain mask was 

fairly liberal. (2) In the correction of EPI spatial distortion, noise in the fieldmap 

estimates outside of the brain can often "pull" signals from brain voxels into locations 

that are outside of the brain. In a sense, things are correct insofar that the voxels 

located in actual brain locations should be getting accurate and correct signals. 

However, it is true that voxels outside of actual brain locations may have 

funny/weird/bogus signals. One strategy is to simply ignore voxels that are outside of 

actual brain locations, and one way to do this is to apply your own (stringent) brain 

5 shared515 = [shared515 q];

6 end

7 end

  Overview of the data 

https://slite.com/api/public/notes/AGEte5w9Nq/redirect
https://slite.com/api/public/notes/AGEte5w9Nq/redirect
https://slite.com/api/public/notes/AGEte5w9Nq/redirect


mask, if you want to. (Alternatively, you can just restrict your interest to surface-

prepared data, which are guaranteed to come from gray matter.)

There is yet one more factor to consider. Outside of the brain, the raw signal intensity 

is quite low, and random noise can often manifest as large %BOLD signal changes 

(i.e. dividing by a small number (e.g. the mean signal intensity) will tend to inflate the 

resulting %BOLD numbers). This is known behavior, and one approach is to simply 

ignore these seemingly large %BOLD values as unreproducible and meaningless 

noise.

"I want to transform the surface-defined ROI masks provided with NSD into a format 

that works with pycortex. How do I do this?"

Pycortex involves creating .svg files for ROI masks. Please see 

https://github.com/gallantlab/pycortex/issues/312 for more information.

Also, please see https://github.com/cvnlab/nsdcode/discussions/23 for some 

useful information.

"What is the breakdown of image databases NSD pulls from and what 

resources/annotation already exist for those?"

All NSD images come from the Microsoft COCO image database. As for resources, 

there are a number of online 'computer vision' resources that provide a wealth of 

annotations on the COCO images (see http://cocodataset.org/#external). In 

addition, note that the externally contributed nsd_access toolbox (see General 

Information ) provides a convenient Python interface for understanding how the 

images selected for use in NSD are mapped onto the COCO images.

"How do I load in the NSD-generated ROI files, like lh.floc-faces.mgz, into 

FreeSurfer's freeview? It won't load in freeview as a surface annotation."

If you use the "Overlay → Load generic..." option, freeview should be able to load and

interpret the surface data in the .mgz files. 

"How do I map from MNI to fsaverage and/or vice versa?"

https://github.com/gallantlab/pycortex/issues/312
https://github.com/cvnlab/nsdcode/discussions/23
http://cocodataset.org/#external
https://slite.com/api/public/notes/M3ZvPmfgU3/redirect
https://slite.com/api/public/notes/M3ZvPmfgU3/redirect
https://slite.com/api/public/notes/M3ZvPmfgU3/redirect
https://slite.com/api/public/notes/M3ZvPmfgU3/redirect


Since MNI and fsaverage are fundamentally different in nature (volume vs. surface-

based), the mapping is, in general, a bit ill-defined. But given that we have lots of 

information on the 8 NSD subjects, you could use nsd_mapdata (volume-to-

nativesurface option) to go from MNI to the native subject surfaces (e.g. 

[lh,rh].layerB2), and then use nsd_mapdata (nativesurface-to-fsaverage option) to go 

from the native subject surface space (e.g. [lh,rh].white) to fsaverage. You could 

repeat this process for each of the NSD subjects and then you could average the 

results in fsaverage space. For additional ideas and background, see here.

"How do I map a specific MNI coordinate using nsd_mapdata?"

The easiest approach would be to copy the MNI 1mm NIFTI template 

(MNI152_T1_1mm.nii.gz), modify the image data inside the template to specifically 

label the MNI coordinate that is desired (ITK-SNAP reports the MNI coordinate as 

"World units (NIFTI)") (e.g., create a binary volume with a "1" at the location of 

interest), load the image data, and then use nsd_mapdata to map the image data to 

some other space. Note that the motivation for building off of the MNI template is to 

ensure that the headers and the RPI ordering is all preserved and handled correctly.

"I want to use some of the FreeSurfer outputs, but I am having trouble getting the 

outputs to work well with nsd_mapdata."

There are tricky issues in terms of how the volume data stored in, e.g., the .mgz files 

are oriented (e.g., NIFTI header issues). The best bet is to see how we handled this 

in the code: 

https://github.com/cvnlab/nsddatapaper/blob/main/main/analysis_transforms.

m

"How can I access the gradient nonlinearity information?"

The pre-processed files provided with NSD involved correcting for gradient 

nonlinearities (these are fairly negligible for the 3T data, but are somewhat 

substantial for the 7T data). We cannot publicly supply the gradient coefficient files. 

The following information was taken from the Human Connectome Project, and it is 

assumed to apply equally to NSD: "The gradient field coefficients are considered 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6239990/
https://github.com/cvnlab/nsddatapaper/blob/main/main/analysis_transforms.m
https://github.com/cvnlab/nsddatapaper/blob/main/main/analysis_transforms.m


proprietary and need to be obtained from your institution's Siemens collaboration 

manager. Your institution must have a research agreement or be willing to sign a 

non-disclosure agreement with Siemens. Contact Yulin Chang (

yulin.chang@siemens-healthineers.com) (USA) or Martin Stoltnow (

martin.stoltnow@siemens-healthineers.com) (rest of world)."

"I need more information on the IRB approval"

Informed written consent was obtained from all participants, and the experimental 

protocol was approved by the University of Minnesota institutional review board 

(Date: August 3, 2018, IRB ID: 1508M77463, Submission ID: MODCR00001243).

Common pitfalls and things to watch out for

Please note that the noise ceiling metrics provided with NSD assume that voxel-wise 

beta weights are z-scored within each session and then aggregated across sessions. 

Analyses that wish to use the noise ceiling metrics must mimic these operations. It is 

possible to apply the general theory of noise ceiling to the case where z-scoring is not

performed, but this is up to the user and is not currently provided with NSD.

Some data files and/or results can involve NaN values (for example, NaN might 

indicate when data are missing), and this may cause problems with various software 

tools. When processing files, it is recommended to check for these cases and resolve 

them appropriately (e.g., possibly setting NaNs to 0).

In the nsd_mapdata utility (and associated transform files), the 'native surface' to 

'fsaverage' transform is accomplished using the arbitrary naming convention of 

'lh.white' and 'rh.white', even though the concept of the fsaverage transform is not 

actually specific to any cortical depth (i.e. it would be equally applicable to the mid-

gray or pial surfaces). Thus, do not let the naming convention cause any confusion. 

For example, using nsd_mapdata, it would be reasonable to map data from the 

'func1pt0' space to 'lh.layerB2' (mid-gray surface), and then map from 'lh.white' 

(which is just the arbitrary naming convention for data on the subject's surface) to 

'fsaverage'.

mailto:yulin.chang@siemens-healthineers.com
mailto:yulin.chang@siemens-healthineers.com
mailto:yulin.chang@siemens-healthineers.com
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Note that no intensity normalization, detrending, or noise removal has been applied 

to the pre-processed fMRI time-series data that are provided with NSD. In particular, 

note that the mean signal intensity present at a given voxel may drift to some degree 

over the course of a run, and might be somewhat variable across runs and scan 

sessions. One should keep these observations in mind when designing an approach 

that starts with the time-series data.

Some of the files that contain betas in percent signal change units are actually 

multiplied by 300 and stored as integer format (to save space), and thus need to be 

casted to decimal format and divided by 300 upon loading. Be careful.

The category-selective ROIs that are provided are intentionally defined with a liberal 

threshold (t > 0). This has the consequence that some ROIs may overlap with other 

ROIs (e.g., the floc-faces ROI collection may label some of the same voxels/vertices 

as the floc-bodies ROI collection). If you require more stringent ROIs, you can further 

whittle them down based on the provided t-values and/or winner-take-all operations, 

etc.

In the floc experiment, the 'body' category is distinct from the 'bodies' domain. The 

latter pools over body the 'body' and 'limb' categories.

The MNI formatting conventions (especially regarding left vs. right) are tricky. Please 

see Technical notes  for details.

If you plan to try to use the transform files provided with NSD, keep in mind that these

files have very specific meanings and conventions, so do not necessarily assume that

they will work "out of the box" with some specific software. If possible, we 

recommend using nsd_mapdata.

Note that the number of volumes in the pre-processed time-series data may be 

slightly larger than expected. This is correct behavior (some "excess" volumes are at 

the end) and has to do with how the pre-processing is performed. For example, the 

duration of the experiment conducted in each prf run is 300 s (or more precisely, 300 

x 0.999878 s = 299.9634 s). The TR is 1.6 s. We acquired 188 volumes for a given 

prf run. Notice that 188 x 1.6 = 300.8 s, which therefore extends a little beyond the 

end of the actual experiment duration. In pre-processing for the standard resolution 

https://slite.com/api/public/notes/h_T_2Djeid/redirect
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version, we resample to a rate of 4/3 s (or more precisely, 4/3 * 0.999878 = 1.33317 

s). To ensure that we accommodate the full duration of the acquired data, the pre-

processing is designed to produce 300.8/(1.33317) = 225.63 volumes. But of course, 

fractional volumes are non-sensical; hence, what we actually do is to round up to 

produce 226 volumes. (Note that there is a little bit of extrapolation involved to 

compute the very final volume.) Thus, 226 volumes is obtained in the pre-processing, 

even though there is a sense in which 225 volumes should have been obtained 

(since 300 s / (4/3 s) = 225). Nonetheless, everything is correct, and you can simply 

strip the 226th volume from the end of the pre-processed data, and you can interpret 

the first 225 volumes as coinciding with, say, the prf stimulus design information that 

we have provided.

The flattened surfaces provided with NSD may have a rotation that may be 

unexpected in certain software packages. If that is the case, you may wish to read in 

the flattened surfaces (e.g. read_patch.m) and apply your own rotation to the vertices 

and then re-save the files.

NSD provides a manually flattened version of the fsaverage surface (?

h.full.flat.patch.3d) that is distinct from the one that comes with FreeSurfer (?

h.cortex.patch.flat). The former is a bit less jaggedy than the latter. Also, the same 

general cutting strategy used for the manually flattened fsaverage was used to 

generate the manually flattened version of each native-subject surface.


